- The query is first processed by the AQuery Compiler which is composed of a frontend that parses the query into AST and a backend that generates target code that delivers the query.
- Front end of AQuery++ Compiler is built on top of [mo-sql-parsing](https://github.com/klahnakoski/mo-sql-parsing) with modifications to handle AQuery dialect and extension.
- Backend of AQuery++ Compiler generates target code dependent on the Execution Engine. It can either be the C++ code for AQuery Execution Engine or sql and C++ post-processor for Hybrid Engine or k9 for the k9 Engine.
### Execution Engines
- AQuery++ supports different execution engines thanks to the decoupled compiler structure.
- AQuery Execution Engine: executes query by compiling the query plan to C++ code. Doesn't support joins and udf functions.
- Hybrid Execution Engine: decouples the query into two parts. The sql-compliant part is executed by an Embedded version of Monetdb and everything else is executed by a post-process module which is generated by AQuery++ Compiler in C++ and then compiled and executed.
1. Recent version of Linux, Windows or MacOS, with recent C++ compiler that has C++17 (1z) support. (however c++20 is recommended if available for heterogeneous lookup on unordered containers)
- GCC: 9.0 or above (g++ 7.x, 8.x fail to handle fold-expressions due to a compiler bug)
-`exec`: execute last parsed statement(s) with AQuery Execution Engine. AQuery Execution Engine executes query by compiling it to C++ code and then executing it.
-`xexec`: execute last parsed statement(s) with Hybrid Execution Engine. Hybrid Execution Engine decouples the query into two parts. The sql-compliant part is executed by an Embedded version of Monetdb and everything else is executed by a post-process module which is generated by AQuery++ Compiler in C++ and then compiled and executed.