dev
sam 2 years ago
parent f434afbee6
commit 52ffb1ad25

Binary file not shown.

@ -672,13 +672,15 @@ def parser(literal_string, ident, sqlserver=False):
module_func_def = (
var_name("fname")
+ LB
+ delimited_list(
(
var_name("arg")
+ COLON
+ var_name("type")
)("vars")
)
+ Optional(
delimited_list(
(
var_name("arg")
+ COLON
+ var_name("type")
)("vars")
)
)
+ RB
+ LAMBDA
+ var_name("ret_type")
@ -725,3 +727,4 @@ def parser(literal_string, ident, sqlserver=False):
)
return stmts.finalize()

@ -98,7 +98,7 @@ FloatT = Types(16, name = 'float', cname = 'float', sqlname = 'REAL',
HgeT = Types(9, name = 'int128',cname='__int128_t', sqlname = 'HUGEINT', fp_type = DoubleT)
UHgeT = Types(10, name = 'uint128', cname='__uint128_t', sqlname = 'HUGEINT', fp_type = DoubleT)
LongT = Types(4, name = 'int64', sqlname = 'BIGINT', fp_type = DoubleT)
BoolT = Types(0, name = 'bool', sqlname = 'BOOL', long_type=LongT, fp_type=FloatT)
BoolT = Types(0, name = 'bool', cname='bool', sqlname = 'BOOL', long_type=LongT, fp_type=FloatT)
ByteT = Types(1, name = 'int8', sqlname = 'TINYINT', long_type=LongT, fp_type=FloatT)
ShortT = Types(2, name = 'int16', sqlname='SMALLINT', long_type=LongT, fp_type=FloatT)
IntT = Types(3, name = 'int', cname = 'int', long_type=LongT, fp_type=FloatT)
@ -338,4 +338,3 @@ user_module_func = {}
builtin_operators : Dict[str, OperatorBase] = {**builtin_binary_arith, **builtin_binary_logical,
**builtin_unary_arith, **builtin_unary_logical, **builtin_unary_special, **builtin_func, **builtin_cstdlib,
**user_module_func}

@ -916,7 +916,7 @@ class insert(ast_node):
# raise ValueError("Column Mismatch")
list_values = []
for i, s in enumerate(values):
for i, s in enumerate(enlist(values)):
if 'value' in s:
list_values.append(f"{s['value']}")
else:

@ -0,0 +1,57 @@
#ifndef CART_H
#define CART_H
#include "Evaluation.h"
struct minEval;
struct DR;
struct DT;
//enum Evaluation {gini, entropy, logLoss};
class DecisionTree{
public:
DT* DTree = nullptr;
int maxHeight;
long feature;
long maxFeature;
long seed;
long classes;
int* Sparse;
double forgetRate;
Evaluation evalue;
long Rebuild;
long roundNo;
long called;
long retain;
DecisionTree(int hight, long f, int* sparse, double forget, long maxFeature, long noClasses, Evaluation e, long r, long rb);
void Stablelize();
void Free();
minEval findMinGiniDense(double** data, long* result, long* totalT, long size, long col);
minEval findMinGiniSparse(double** data, long* result, long* totalT, long size, long col, DT* current);
minEval incrementalMinGiniDense(double** data, long* result, long size, long col, long*** count, double** record, long* max, long newCount, long forgetSize, bool isRoot);
minEval incrementalMinGiniSparse(double** dataNew, long* resultNew, long sizeNew, long sizeOld, DT* current, long col, long forgetSize, bool isRoot);
long* fitThenPredict(double** trainData, long* trainResult, long trainSize, double** testData, long testSize);
void fit(double** data, long* result, long size);
void Update(double** data, long* result, long size, DT* current);
void IncrementalUpdate(double** data, long* result, long size, DT* current);
long Test(double* data, DT* root);
void print(DT* root);
};
#endif

@ -0,0 +1,278 @@
#include "Evaluation.h"
#include <cfloat>
#include <math.h>
#include <cstdio>
struct minEval{
double value;
double values;
double eval;
long left; // how many on its left
double* record;
long max;
long** count;
long* sorted; // sorted d
};
minEval giniSparse(double** data, long* result, long* d, long size, long col, long classes, long* totalT){
double max = data[d[size-1]][col];
minEval ret;
ret.eval = DBL_MAX;
long i, j;
long count[classes];
long total = 0;
for(i=0; i<classes; i++)count[i]=0;
double gini1, gini2;
double c;
long l, r;
for(i=0; i<size; i++){
c = data[d[i]][col];
if(c==max)break;
count[result[d[i]]]++;
total++;
if(c==data[d[i+1]][col])continue;
gini1 = 1.0;
gini2 = 1.0;
for(j=0;j<classes;j++){
l = count[j];
r = totalT[j]-l;
gini1 -= pow((double)l/total, 2);
gini2 -= pow((double)r/(size-total), 2);
}
gini1 = gini1*total/size + gini2*(size-total)/size;
if(ret.eval>gini1){
ret.eval = gini1;
ret.value = c;
ret.left = total;
}
}
return ret;
}
minEval entropySparse(double** data, long* result, long* d, long size, long col, long classes, long* totalT){
double max = data[d[size-1]][col];
minEval ret;
ret.eval = DBL_MAX;
long i, j;
long count[classes];
long total = 0;
for(i=0; i<classes; i++)count[i]=0;
double entropy1, entropy2;
double c;
long l, r;
for(i=0; i<size; i++){
c = data[d[i]][col];
if(c==max)break;
count[result[d[i]]]++;
total++;
if(c==data[d[i+1]][col])continue;
entropy1 = 0;
entropy2 = 0;
for(j=0;j<classes;j++){
l = count[j];
r = totalT[j]-l;
entropy1 -= ((double)l/total)*log((double)l/total);
entropy2 -= ((double)r/(size-total))*log((double)r/(size-total));
}
entropy1 = entropy1*total/size + entropy2*(size-total)/size;
if(ret.eval>entropy1){
ret.eval = entropy1;
ret.value = c;
ret.left = total;
}
}
return ret;
}
minEval giniSparseIncremental(long sizeTotal, long classes, double* newSortedData, long* newSortedResult, long* T){
long l, r, i, j;
minEval ret;
ret.eval = DBL_MAX;
double gini1, gini2;
long count[classes];
long total = 0;
for(i=0; i<classes; i++)count[i]=0;
double c, max=newSortedData[sizeTotal-1]; // largest value
for(i=0; i<sizeTotal; i++){
c = newSortedData[i];
if(c==max)break;
count[newSortedResult[i]]++;
total++;
if(c==newSortedData[i+1])continue;
gini1 = 1.0;
gini2 = 1.0;
for(j=0;j<classes;j++){
l = count[j];
r = T[j]-l;
gini1 -= pow((double)l/total, 2);
gini2 -= pow((double)r/(sizeTotal-total), 2);
}
gini1 = (gini1*total)/sizeTotal + (gini2*(sizeTotal-total))/sizeTotal;
if(ret.eval>gini1){
ret.eval = gini1;
ret.value = c;
}
}
return ret;
}
minEval entropySparseIncremental(long sizeTotal, long classes, double* newSortedData, long* newSortedResult, long* T){
long l, r, i, j;
minEval ret;
ret.eval = DBL_MAX;
double e1, e2;
long count[classes];
long total = 0;
for(i=0; i<classes; i++)count[i]=0;
double c, max=newSortedData[sizeTotal-1]; // largest value
for(i=0; i<sizeTotal; i++){
c = newSortedData[i];
if(c==max)break;
count[newSortedResult[i]]++;
total++;
if(c==newSortedData[i+1])continue;
e1 = 0;
e2 = 0;
for(j=0;j<classes;j++){
l = count[j];
r = T[j]-l;
e1 -= ((double)l/total)*log((double)l/total);
e2 -= ((double)r/(sizeTotal-total))*log((double)r/(sizeTotal-total));
}
e1 = e1*total/sizeTotal + e2*(sizeTotal-total)/sizeTotal;
if(ret.eval>e1){
ret.eval = e1;
ret.value = c;
}
}
return ret;
}
minEval giniDense(long max, long size, long classes, long** rem, long* d, double* record, long* totalT){
minEval ret;
ret.eval = DBL_MAX;
double gini1, gini2;
long *t, *t2, *r, *r2, i, j;
for(i=0;i<max;i++){
t = rem[d[i]];
if(i>0){
t2 = rem[d[i-1]];
for(j=0;j<=classes;j++){
t[j]+=t2[j];
}
}
if(t[classes]>=size)break;
gini1 = 1.0;
gini2 = 1.0;
for(j=0;j<classes;j++){
long l, r;
l = t[j];
r = totalT[j]-l;
gini1 -= pow((double)l/t[classes], 2);
gini2 -= pow((double)r/(size-t[classes]), 2);
}
gini1 = (gini1*t[classes])/size + (gini2*(size-t[classes]))/size;
if(gini1<ret.eval){
ret.eval = gini1;
ret.value = record[d[i]];
ret.left = t[classes];
}
}
return ret;
}
minEval entropyDense(long max, long size, long classes, long** rem, long* d, double* record, long* totalT){
minEval ret;
ret.eval = DBL_MAX;
double entropy1, entropy2;
long *t, *t2, *r, *r2, i, j;
for(i=0;i<max;i++){
t = rem[d[i]];
if(i>0){
t2 = rem[d[i-1]];
for(j=0;j<=classes;j++){
t[j]+=t2[j];
}
}
if(t[classes]>=size)break;
entropy1 = 0;
entropy2 = 0;
for(j=0;j<classes;j++){
long l, r;
l = t[j];
r = totalT[j]-l;
entropy1 -= ((double)l/t[classes])*log((double)l/t[classes]);
entropy2 -= ((double)r/(size-t[classes]))*log((double)r/(size-t[classes]));
}
entropy1 = entropy1*t[classes]/size + entropy2*(size-t[classes])/size;
if(entropy1<ret.eval){
ret.eval = entropy1;
ret.value = record[d[i]];
ret.left = t[classes];
}
}
return ret;
}
minEval giniDenseIncremental(long max, double* record, long** count, long classes, long newSize, long* T){
double gini1, gini2;
minEval ret;
long i, j;
ret.eval = DBL_MAX;
for(i=0; i<max; i++){
if(count[i][classes]==newSize){
continue;
}
gini1 = 1.0;
gini2 = 1.0;
for(j=0;j<classes;j++){
long l, r;
l = count[i][j];
r = T[j]-l;
gini1 -= pow((double)l/count[i][classes], 2);
gini2 -= pow((double)r/(newSize-count[i][classes]), 2);
}
gini1 = gini1*count[i][classes]/newSize + gini2*((newSize-count[i][classes]))/newSize;
if(gini1<ret.eval){
ret.eval = gini1;
ret.value = record[i];
}
}
return ret;
}
minEval entropyDenseIncremental(long max, double* record, long** count, long classes, long newSize, long* T){
double entropy1, entropy2;
minEval ret;
long i, j;
ret.eval = DBL_MAX;
for(i=0; i<max; i++){
if(count[i][classes]==newSize or count[i][classes]==0){
continue;
}
entropy1 = 0;
entropy2 = 0;
for(j=0;j<classes;j++){
long l, r;
l = count[i][j];
r = T[j]-l;
entropy1 -= ((double)l/count[i][classes])*log((double)l/count[i][classes]);
entropy2 -= (double)r/(newSize-count[i][classes])*log((double)r/(newSize-count[i][classes]));
}
entropy1 = entropy1*count[i][classes]/newSize + entropy2*((newSize-count[i][classes]))/newSize;
if(entropy1<ret.eval){
ret.eval = entropy1;
ret.value = record[i];
}
}
return ret;
}

@ -0,0 +1,24 @@
#ifndef EVALUATION_H
#define EVALUATION_H
struct minEval;
enum Evaluation {gini, entropy, logLoss};
minEval giniSparse(double** data, long* result, long* d, long size, long col, long classes, long* totalT);
minEval entropySparse(double** data, long* result, long* d, long size, long col, long classes, long* totalT);
minEval giniSparseIncremental(long sizeTotal, long classes, double* newSortedData, long* newSortedResult, long* T);
minEval entropySparseIncremental(long sizeTotal, long classes, double* newSortedData, long* newSortedResult, long* T);
minEval giniDense(long max, long size, long classes, long** rem, long* d, double* record, long* totalT);
minEval entropyDense(long max, long size, long classes, long** rem, long* d, double* record, long* totalT);
minEval giniDenseIncremental(long max, double* record, long** count, long classes, long newSize, long* T);
minEval entropyDenseIncremental(long max, double* record, long** count, long classes, long newSize, long* T);
#endif

@ -0,0 +1,139 @@
#include "RF.h"
#include <stdlib.h>
#include <stdio.h>
#include <ctime>
struct DT{
int height;
long* featureId;
DT* left = nullptr;
DT* right = nullptr;
// split info
bool terminate;
double dpoint;
long feature;
long result;
// Sparse data record
double** sortedData; // for each feature, sorted data
long** sortedResult;
// Dense data record
long*** count = nullptr;// for each feature, number of data belongs to each class and dense value
double** record = nullptr;// for each feature, record each dense data
long* max = nullptr;// number of dense value of each feature
//long* T; // number of data in each class in this node
double** dataRecord = nullptr;// Record the data
long* resultRecord = nullptr;// Record the result
long size = 0;// Size of the dataset
};
RandomForest::RandomForest(long mTree, long actTree, long rTime, int h, long feature, int* s, double forg, long maxF, long noC, Evaluation eval, long r, long rb){
srand((long)clock());
Rebuild = rb;
if(actTree<1)actTree=1;
noTree = actTree;
activeTree = actTree;
treePointer = 0;
if(mTree<actTree)mTree=activeTree;
maxTree = mTree;
if(rTime<=0)rTime=1;
rotateTime = rTime;
timer = 0;
retain = r;
long i;
height = h;
f = feature;
sparse = new int[f];
for(i=0; i<f; i++)sparse[i]=s[i];
forget = forg;
maxFeature = maxF;
noClasses = noC;
e = eval;
DTrees = (DecisionTree**)malloc(mTree*sizeof(DecisionTree*));
for(i=0; i<mTree; i++){
if(i<actTree){
DTrees[i] = new DecisionTree(height, f, sparse, forget, maxFeature, noClasses, e, r, rb);
}
else{
DTrees[i]=nullptr;
}
}
}
void RandomForest::fit(double** data, long* result, long size){
if(timer==rotateTime and maxTree!=activeTree){
Rotate();
timer=0;
}
long i, j, k;
double** newData;
long* newResult;
for(i=0; i<activeTree; i++){
newData = new double*[size];
newResult = new long[size];
for(j = 0; j<size; j++){
newData[j] = new double[f];
for(k=0; k<f; k++){
newData[j][k] = data[j][k];
}
newResult[j] = result[j];
}
DTrees[(i+treePointer)%maxTree]->fit(newData, newResult, size);
}
timer++;
}
long* RandomForest::fitThenPredict(double** trainData, long* trainResult, long trainSize, double** testData, long testSize){
fit(trainData, trainResult, trainSize);
long* testResult = (long*)malloc(testSize*sizeof(long));
for(long i=0; i<testSize; i++){
testResult[i] = Test(testData[i]);
}
return testResult;
}
void RandomForest::Rotate(){
if(noTree==maxTree){
DTrees[(treePointer+activeTree)%maxTree]->Free();
delete DTrees[(treePointer+activeTree)%maxTree];
}else{
noTree++;
}
DTrees[(treePointer+activeTree)%maxTree] = new DecisionTree(height, f, sparse, forget, maxFeature, noClasses, e, retain, Rebuild);
long size = DTrees[(treePointer+activeTree-1)%maxTree]->DTree->size;
double** newData = new double*[size];
long* newResult = new long[size];
for(long j = 0; j<size; j++){
newData[j] = new double[f];
for(long k=0; k<f; k++){
newData[j][k] = DTrees[(treePointer+activeTree-1)%maxTree]->DTree->dataRecord[j][k];
}
newResult[j] = DTrees[(treePointer+activeTree-1)%maxTree]->DTree->resultRecord[j];
}
DTrees[(treePointer+activeTree)%maxTree]->fit(newData, newResult, size);
DTrees[treePointer]->Stablelize();
if(++treePointer==maxTree)treePointer=0;
}
long RandomForest::Test(double* data){
long i;
long predict[noClasses];
for(i=0; i<noClasses; i++)predict[i]=0;
for(i=0; i<noTree; i++){
predict[DTrees[i]->Test(data, DTrees[i]->DTree)]++;
}
long ret = 0;
for(i=1; i<noClasses; i++){
if(predict[i]>predict[ret])ret = i;
}
return ret;
}

@ -0,0 +1,46 @@
#ifndef RF_H
#define RF_H
#include "DecisionTree.h"
struct minEval;
struct DR;
struct DT;
//enum Evaluation {gini, entropy, logLoss};
class RandomForest{
public:
long noTree;
long maxTree;
long activeTree;
long treePointer;
long rotateTime;
long timer;
long retain;
DecisionTree** DTrees = nullptr;
long height;
long Rebuild;
long f;
int* sparse;
double forget;
long maxFeature;
long noClasses;
Evaluation e;
RandomForest(long maxTree, long activeTree, long rotateTime, int height, long f, int* sparse, double forget, long maxFeature=0, long noClasses=2, Evaluation e=Evaluation::gini, long r=-1, long rb=2147483647);
void fit(double** data, long* result, long size);
long* fitThenPredict(double** trainData, long* trainResult, long trainSize, double** testData, long testSize);
void Rotate();
long Test(double* data);
};
#endif

@ -86,11 +86,26 @@ __AQEXPORT__(void) init_session(Context* cxt);
#else
void* memcpy(void*, const void*, unsigned long long);
#endif
struct vectortype_storage{
void* container = nullptr;
unsigned int size = 0, capacity = 0;
vectortype_storage(void* container, unsigned int size, unsigned int capacity) :
container(container), size(size), capacity(capacity) {}
vectortype_storage() = default;
template <class Ty, template <typename> class VT>
vectortype_storage(const VT<Ty>& vt) {
memcpy(this, &vt, sizeof(vectortype_storage));
}
};
struct ColRef_storage {
void* container;
unsigned int capacity, size;
const char* name;
int ty; // what if enum is not int?
void* container = nullptr;
unsigned int size = 0, capacity = 0;
const char* name = nullptr;
int ty = 0; // what if enum is not int?
ColRef_storage(void* container, unsigned int size, unsigned int capacity, const char* name, int ty) :
container(container), size(size), capacity(capacity), name(name), ty(ty) {}
ColRef_storage() = default;
template <class Ty, template <typename> class VT>
ColRef_storage(const VT<Ty>& vt) {
memcpy(this, &vt, sizeof(ColRef_storage));

@ -0,0 +1,774 @@
#include <algorithm>
#include <stddef.h>
#include <stdlib.h>
#include <math.h>
#include "DecisionTree.h"
#include "Evaluation.h"
#include <fstream>
#include <float.h>
#include <ctime>
struct minEval{
double value;
int* values;
double eval;
long left; // how many on its left
double* record;
long max;
long** count;
};
struct DT{
int height;
long* featureId;
DT* left = nullptr;
DT* right = nullptr;
// split info
bool terminate;
double dpoint;
long feature;
long result;
// Sparse data record
double** sortedData; // for each feature, sorted data
long** sortedResult;
// Dense data record
long*** count = nullptr;// for each feature, number of data belongs to each class and dense value
double** record = nullptr;// for each feature, record each dense data
long* max = nullptr;// number of dense value of each feature
//long* T; // number of data in each class in this node
double** dataRecord = nullptr;// Record the data
long* resultRecord = nullptr;// Record the result
long size = 0;// Size of the dataset
};
long seed = (long)clock();
long* Rands(long feature, long maxFeature){
//srand(seed++);
long i;
long* ret = (long*) malloc(feature*sizeof(long));
for(i =0; i<feature; i++)ret[i] = i;
if(maxFeature==feature){
return ret;
}
std::random_shuffle(ret, &ret[feature]);
long* ret2 = (long*) malloc(maxFeature*sizeof(long));
for(i=0; i<maxFeature; i++)ret2[i] = ret[i];
free(ret);
return ret2;
}
double getRand(){
return (double) rand() / RAND_MAX;
}
void createTree(DT* t, long currentHeight, long height, long f, long maxF, long classes){
srand(seed);
long i;
t->count = (long***)malloc(f*sizeof(long**));
for(i=0; i<f; i++)t->count[i]=nullptr;
t->record = (double**)malloc(f*sizeof(double*));
for(i=0; i<f; i++)t->record[i]=nullptr;
t->max = (long*)malloc(f*sizeof(long));
t->max[0] = -1;
t->featureId = Rands(f, maxF);
//t->T = (long*)malloc(classes*sizeof(long));
t->sortedData = (double**) malloc(f*sizeof(double*));
for(i=0; i<f; i++)t->sortedData[i]=nullptr;
t->sortedResult = (long**) malloc(f*sizeof(long*));
for(i=0; i<f; i++)t->sortedResult[i]=nullptr;
t->dataRecord = nullptr;
t->resultRecord = nullptr;
t->height = currentHeight;
t->feature = -1;
t->size = 0;
if(currentHeight>height){
t->right = nullptr;
t->left = nullptr;
return;
}
t->left = (DT*)malloc(sizeof(DT));
t->right = (DT*)malloc(sizeof(DT));
createTree(t->left, currentHeight+1, height, f, maxF, classes);
createTree(t->right, currentHeight+1, height, f, maxF, classes);
}
void stableTree(DT* t, long f){
long i, j;
for(i=0; i<f; i++){
if(t->count[i]==nullptr)continue;
for(j=0; j<t->max[i]; j++){
free(t->count[i][j]);
}
free(t->count[i]);
}
free(t->count);
for(i=0; i<f; i++){
if(t->record[i]==nullptr)continue;
free(t->record[i]);
}
free(t->record);
free(t->max);
free(t->featureId);
for(i=0; i<f; i++){
if(t->sortedData[i]==nullptr)continue;
free(t->sortedData[i]);
}
free(t->sortedData);
for(i=0; i<f; i++){
if(t->sortedResult[i]==nullptr)continue;
free(t->sortedResult[i]);
}
free(t->sortedResult);
free(t->dataRecord);
free(t->resultRecord);
if(t->right!=nullptr)stableTree(t->right, f);
if(t->left!=nullptr)stableTree(t->left, f);
}
void freeTree(DT* t){
if(t->left != nullptr)freeTree(t->left);
if(t->right != nullptr)freeTree(t->right);
free(t);
}
DecisionTree::DecisionTree(int height, long f, int* sparse, double forget=0.1, long maxF=0, long noClasses=2, Evaluation e=Evaluation::gini, long r=-1, long rb=1){
evalue = e;
called = 0;
long i;
// Max tree height
maxHeight = height;
// Number of features
feature = f;
// If each feature is sparse or dense, 0 for dense, 1 for sparse, >2 for number of category
Sparse = (int*)malloc(f*sizeof(int));
for(i = 0; i<f; i++){
Sparse[i] = sparse[i];
}
// Create Decision tree
DTree = (DT*)malloc(sizeof(DT));
DTree->feature = -1;
// The number of feature that is considered in each node
if(maxF>=f){
maxFeature = f;
}else if(maxF<=0){
maxFeature = (long)round(sqrt(f));
}else{
maxFeature = maxF;
}
forgetRate = std::min(1.0, forget);
retain = r;
createTree(DTree, 0, maxHeight, f, maxFeature, noClasses);
// Randomly generate the features
//DTree->featureId = Rands();
//DTree->sorted = (long**) malloc(f*sizeof(long*));
// Number of classes of this dataset
Rebuild = rb;
roundNo = 0;
classes = std::max(noClasses, (long)2);
//DTree->T = (long*) malloc(noClasses*sizeof(long));
/*for(long i = 0; i<noClasses; i++){
DTree->T[i]=0;
}*/
}
void DecisionTree::Stablelize(){
free(Sparse);
stableTree(DTree, feature);
}
void DecisionTree::Free(){
freeTree(DTree);
}
minEval DecisionTree::incrementalMinGiniSparse(double** dataTotal, long* resultTotal, long sizeTotal, long sizeNew, DT* current, long col, long forgetSize, bool isRoot){
long i, j;
if(isRoot){sizeNew=sizeTotal-forgetSize;}
long newD[sizeNew];
for(i=0; i<sizeNew; i++)newD[i]=i;
long T[classes];
for(i=0; i<classes; i++)T[i]=0;
std::sort(newD, newD+sizeNew, [&dataTotal, col](long l, long r){return dataTotal[l][col]<dataTotal[r][col];});
double* newSortedData = (double*)malloc(sizeTotal*sizeof(double));
long* newSortedResult = (long*)malloc(sizeTotal*sizeof(long));
long p1=0, p2=0;
double* oldData = current->sortedData[col];
long* oldResult = current->sortedResult[col];
for(i=0; i<sizeTotal; i++){
if(p1==sizeNew){
newSortedData[i] = oldData[p2];
newSortedResult[i] = oldResult[p2];
T[newSortedResult[i]]++;
p2++;
}
else if(p2==sizeTotal-sizeNew){
newSortedData[i] = dataTotal[newD[p1]][col];
newSortedResult[i] = resultTotal[newD[p1]];
T[newSortedResult[i]]++;
p1++;
}
else if(dataTotal[newD[p1]][col]<oldData[p2]){
newSortedData[i] = dataTotal[newD[p1]][col];
newSortedResult[i] = resultTotal[newD[p1]];
T[newSortedResult[i]]++;
p1++;
}else{
newSortedData[i] = oldData[p2];
newSortedResult[i] = oldResult[p2];
T[newSortedResult[i]]++;
p2++;
}
}
current->sortedData[col] = newSortedData;
current->sortedResult[col] = newSortedResult;
free(oldData);
free(oldResult);
minEval ret;
if(evalue == Evaluation::gini){
ret = giniSparseIncremental(sizeTotal, classes, newSortedData, newSortedResult, T);
}else if(evalue == Evaluation::entropy or evalue == Evaluation::logLoss){
ret = entropySparseIncremental(sizeTotal, classes, newSortedData, newSortedResult, T);
}
ret.values = nullptr;
return ret;
}
minEval DecisionTree::incrementalMinGiniDense(double** data, long* result, long size, long col, long*** count, double** record, long* max, long newSize, long forgetSize, bool isRoot){
// newSize is before forget
long low = 0;
if(isRoot)size=newSize-forgetSize;
long i, j, k;
long newMax = 0;
long maxLocal = max[col];
long **newCount=(long**)malloc(size*sizeof(long*));
for(i=0;i<size;i++){
newCount[i] = (long*)malloc((classes+1)*sizeof(long));
for(j=0;j<= classes;j++)newCount[i][j]=0;
}
double newRecord[size];
bool find;
// find total count for each class
long T[classes];
for(i=0;i<classes;i++)T[i]=0;
for(i=0;i<max[col];i++){
for(j=0;j<classes;j++){
if(isRoot)count[col][i][j]=0;
else if(T[j]<count[col][i][j])T[j]=count[col][i][j];
}
}
// plug in new data
for(i=0; i<size; i++){
find = false;
T[result[i]]++;
for(j=0;j<max[col];j++){
if(data[i][col]==record[col][j]){
count[col][j][result[i]]++;
count[col][j][classes] ++;
find = true;
}else if(data[i][col]<record[col][j]){
count[col][j][result[i]]++;
count[col][j][classes] ++;
}
}
for(j=0;j<newMax;j++){
if(data[i][col]==newRecord[j]){
newCount[j][result[i]]++;
newCount[j][classes] ++;
find = true;
} else if(data[i][col]<newRecord[j]){
newCount[j][result[i]]++;
newCount[j][classes] ++;
}
}
if(not find){
newRecord[newMax] = data[i][col];
double currentMinMax = -1*DBL_MAX;
for(j=0;j<max[col];j++){
if(record[col][j]<newRecord[newMax] and record[col][j]>currentMinMax){
currentMinMax = record[col][j];
for(k=0;k<=classes;k++)newCount[newMax][k]=count[col][j][k];
}
}
for(j=0;j<newMax;j++){
if(newRecord[j]<newRecord[newMax] and currentMinMax<newRecord[j]){
currentMinMax = newRecord[j];
for(k=0;k<=classes;k++)newCount[newMax][k]=newCount[j][k];
}
}
if(currentMinMax== -1*DBL_MAX){
for(k=0;k<=classes;k++)newCount[newMax][k]=0;
}
newCount[newMax][result[i]]++;
newCount[newMax][classes]++;
newMax++;
}
}
// Updata new count and record
if(newMax>0){
max[col]+=newMax;
long** updateCount = (long**)malloc(max[col]*sizeof(long*));
double* updateRecord = (double*)malloc(max[col]*sizeof(double));
for(i=0; i<max[col]; i++){
if(i>=newMax){
updateCount[i] = count[col][i-newMax];
updateRecord[i] = record[col][i-newMax];
}
else{
updateCount[i] = newCount[i];
updateRecord[i] = newRecord[i];
}
}
free(count[col]);
free(record[col]);
count[col]=updateCount;
record[col]=updateRecord;
}
for(i=newMax; i<size; i++){
free(newCount[i]);
}
free(newCount);
//calculate gini
minEval ret;
if(evalue==Evaluation::gini){
ret = giniDenseIncremental(max[col], record[col], count[col], classes, newSize, T);
}else if(evalue==Evaluation::entropy or evalue==Evaluation::logLoss){
ret = entropyDenseIncremental(max[col], record[col], count[col], classes, newSize, T);
}
ret.values = nullptr;
return ret;
}
minEval DecisionTree::findMinGiniSparse(double** data, long* result, long* totalT, long size, long col, DT* current){
long i, j;
long* d = (long*)malloc(size*sizeof(long));
for(i=0; i<size; i++)d[i]=i;
std::sort(d, d+size, [&data, col](long l, long r){return data[l][col]<data[r][col];});
minEval ret;
if(evalue == Evaluation::gini){
ret = giniSparse(data, result, d, size, col, classes, totalT);
}else if(evalue == Evaluation::entropy or evalue == Evaluation::logLoss){
ret = entropySparse(data, result, d, size, col, classes, totalT);
}
if(current->sortedData[col] != nullptr)free(current->sortedData[col]);
if(current->sortedResult[col] != nullptr)free(current->sortedResult[col]);
current->sortedData[col] = (double*) malloc(size*sizeof(double));
current->sortedResult[col] = (long*) malloc(size*sizeof(long));
for(i=0;i<size; i++){
current->sortedData[col][i] = data[d[i]][col];
current->sortedResult[col][i] = result[d[i]];
}
free(d);
ret.values = nullptr;
return ret;
}
minEval DecisionTree::findMinGiniDense(double** data, long* result, long* totalT, long size, long col){
long low = 0;
long i, j, k, max=0;
long** count = (long**)malloc(size*sizeof(long*));
// size2 and count2 are after forget
double* record = (double*)malloc(size*sizeof(double));
bool find;
for(i=0;i<size;i++){
find = false;
for(j=0; j<max; j++){
if(record[j]==data[i][col]){
count[j][result[i]]++;
count[j][classes]++;
find = true;
break;
}
}
if(not find){
count[max] = (long*)malloc((classes+1)*sizeof(long));
record[max]=data[i][col];
for(j=0;j<=classes;j++){
count[max][j] = 0;
}
count[max][result[i]]++;
count[max][classes]++;
max++;
}
}
long** rem = (long**)malloc(max*sizeof(long*));
double* record2 = (double*)malloc(max*sizeof(double));
for(i=0;i<max;i++){
rem[i] = count[i];
record2[i] = record[i];
}
free(count);
free(record);
long d[max];
for(i=0;i<max;i++){
d[i] = i;
}
std::sort(d, d+max, [&record2](long l, long r){return record2[l]<record2[r];});
minEval ret;
if(evalue == Evaluation::gini){
ret = giniDense(max, size, classes, rem, d, record2, totalT);
}else if(evalue == Evaluation::entropy or evalue == Evaluation::logLoss){
ret = entropyDense(max, size, classes, rem, d, record2, totalT);
}
ret.record = record2;
ret.max = max;
ret.count = rem;
ret.values = nullptr;
return ret;
}
double xxx;
void DecisionTree::fit(double** data, long* result, long size){
roundNo++;
if(DTree->size==0){
Update(data, result, size, DTree);
}else{
IncrementalUpdate(data, result, size, DTree);
}
/*
if(Rebuild and called==10){
called = 0;
Rebuild = false;
}else if(Rebuild){
called = 11;
}else{
called++;
}*/
}
long* DecisionTree::fitThenPredict(double** trainData, long* trainResult, long trainSize, double** testData, long testSize){
fit(trainData, trainResult, trainSize);
long* testResult = (long*)malloc(testSize*sizeof(long));
for(long i=0; i<testSize; i++){
testResult[i] = Test(testData[i], DTree);
}
return testResult;
}
void DecisionTree::IncrementalUpdate(double** data, long* result, long size, DT* current){
long i, j;
long low = 0;
long forgetSize=0;
if(retain>0 and current->size+size>retain) forgetSize = std::min(current->size+size - retain, current->size);
else if(retain<0) forgetSize = (long)current->size*forgetRate;
long* index = new long[current->size];
double** dataNew;
long* resultNew;
if(current->height == 0){
dataNew = (double**)malloc((size+current->size-forgetSize)*sizeof(double*));
resultNew = (long*)malloc((size+current->size-forgetSize)*sizeof(long));
for(i=0;i<size;i++){
dataNew[i] = data[i];
resultNew[i] = result[i];
}
for(i=0; i<current->size; i++){
index[i] = i;
}
std::random_shuffle(index, index+current->size);
long x = 0;
for(i=0;i<current->size;i++){
if(i>=current->size-forgetSize){
current->dataRecord[index[i]][feature-1] = DBL_MAX;
}else{
dataNew[i+size] = current->dataRecord[index[i]];
resultNew[i+size] = current->resultRecord[index[i]];
}
}
}else{
forgetSize = 0;
dataNew = (double**)malloc((size+current->size)*sizeof(double*));
resultNew = (long*)malloc((size+current->size)*sizeof(long));
for(i=0;i<size;i++){
dataNew[i] = data[i];
resultNew[i] = result[i];
}
for(i=0;i<current->size;i++){
if(current->dataRecord[i][feature-1] == DBL_MAX){
forgetSize++;
continue;
}else{
dataNew[i+size-forgetSize] = current->dataRecord[i];
resultNew[i+size-forgetSize] = current->resultRecord[i];
}
}
}
free(data);
free(result);
current->size -= forgetSize;
current->size += size;
// end condition
if(current->terminate or roundNo%Rebuild==0){
if(current->height == 0){
for(i=0; i<forgetSize; i++){
free(current->dataRecord[index[current->size-size+i]]);
}
}
delete(index);
Update(dataNew, resultNew, current->size, current);
return;
}
// find min gini
minEval c, cMin;
long cFeature;
cMin.eval = DBL_MAX;
cMin.values = nullptr;
// TODO
for(i=0;i<maxFeature; i++){
if(Sparse[current->featureId[i]]==1){
c = incrementalMinGiniSparse(dataNew, resultNew, current->size+forgetSize, size, current, current->featureId[i], forgetSize, false);
}
else if(Sparse[current->featureId[i]]==0){
c = incrementalMinGiniDense(dataNew, resultNew, size, current->featureId[i], current->count, current->record, current->max, current->size+forgetSize, forgetSize, false);
}else{
//c = incrementalMinGiniCategorical();
}
if(c.eval<cMin.eval){
cMin.eval = c.eval;
cMin.value = c.value;
if(cMin.values != nullptr)free(cMin.values);
cMin.values = c.values;
cFeature = current->featureId[i];
}else if(c.values!=nullptr)free(c.values);
}
if(cMin.eval==DBL_MAX){
current->terminate = true;
long t[classes];
for(i=0;i<classes;i++){
t[i]=0;
}
for(i=low;i<low+size;i++){
t[result[i]]++;
}
if(cMin.values!=nullptr)free(cMin.values);
current->result = std::distance(t, std::max_element(t, t+classes));
return;
}
//diverse data
long ptL=0, ptR=0;
double* t;
long currentSize = current->size;
//TODO:Discrete
// Same diverse point as last time
if(current->dpoint==cMin.value and current->feature==cFeature){
long xxx = current->left->size;
/*for(i=0; i<size; i++){
if(dataNew[i][current->feature]<=current->dpoint){
ptL++;
}else{
ptR++;
}
}*/
ptL = size;
ptR = size;
long* resultL = (long*)malloc((ptL)*sizeof(long));
long* resultR = (long*)malloc((ptR)*sizeof(long));
double** dataL = (double**)malloc((ptL)*sizeof(double*));
double** dataR = (double**)malloc((ptR)*sizeof(double*));
ptL = 0;
ptR = 0;
for(i=0; i<size; i++){
if(dataNew[i][current->feature]<=current->dpoint){
dataL[ptL] = dataNew[i];
resultL[ptL] = resultNew[i];
ptL++;
}else{
dataR[ptR] = dataNew[i];
resultR[ptR] = resultNew[i];
ptR++;
}
}
IncrementalUpdate(dataL, resultL, ptL, current->left);
IncrementalUpdate(dataR, resultR, ptR, current->right);
if(current->height == 0){
for(i=0; i<forgetSize; i++){
free(current->dataRecord[index[current->size-size+i]]);
}
}
delete(index);
free(current->dataRecord);
free(current->resultRecord);
current->dataRecord = dataNew;
current->resultRecord = resultNew;
return;
}
// Different diverse point
current->feature = cFeature;
current->dpoint = cMin.value;
/*for(i=0; i<currentSize; i++){
if(dataNew[i][current->feature]<=current->dpoint){
ptL++;
}else{
ptR++;
}
}*/
long* resultL = (long*)malloc(currentSize*sizeof(long));
long* resultR = (long*)malloc(currentSize*sizeof(long));
double** dataL = (double**)malloc(currentSize*sizeof(double*));
double** dataR = (double**)malloc(currentSize*sizeof(double*));
ptL = 0;
ptR = 0;
for(i=0; i<currentSize; i++){
if(dataNew[i][current->feature]<=current->dpoint){
dataL[ptL] = dataNew[i];
resultL[ptL] = resultNew[i];
ptL++;
}else{
dataR[ptR] = dataNew[i];
resultR[ptR] = resultNew[i];
ptR++;
}
}
Update(dataL, resultL, ptL, current->left);
Update(dataR, resultR, ptR, current->right);
if(current->height == 0){
for(i=0; i<forgetSize; i++){
free(current->dataRecord[index[current->size-size+i]]);
}
}
delete(index);
free(current->dataRecord);
free(current->resultRecord);
current->dataRecord = dataNew;
current->resultRecord = resultNew;
}
void DecisionTree::Update(double** data, long* result, long size, DT* current){
long low = 0;
long i, j;
// end condition
if(current->dataRecord!=nullptr)free(current->dataRecord);
current->dataRecord = data;
if(current->resultRecord!=nullptr)free(current->resultRecord);
current->resultRecord = result;
current->size = size;
if(current->height == maxHeight){
current->terminate = true;
long t[classes];
for(i=0;i<classes;i++){
t[i]=0;
}
for(i=low;i<low+size;i++){
t[result[i]]++;
}
current->result = std::distance(t, std::max_element(t, t+classes));
return;
}
long T[classes];
for(i=0;i<classes;i++){
T[i] = 0;
}
for(i=0;i<size;i++){
j = result[i];
T[j]++;
}
for(i=0;i<classes;i++){
if(T[i]==size){
current->terminate = true;
current->result = i;
return;
}
}
// find min Evaluation
minEval c, cMin;
long cFeature, oldMax, col, left=0;
cMin.eval = DBL_MAX;
cMin.values = nullptr;
//TODO
for(i=0;i<maxFeature; i++){
col = current->featureId[i];
if(Sparse[current->featureId[i]]==1){
c = findMinGiniSparse(data, result, T, size, col, current);
}
else if(Sparse[current->featureId[i]]==0){
c = findMinGiniDense(data, result, T, size, col);
if(current->count[col]!=nullptr){
for(j=0; j<current->max[col]; j++){
if(current->count[col][j]!=nullptr)free(current->count[col][j]);
}
free(current->count[col]);
free(current->record[col]);
}
current->count[col] = c.count;
current->record[col] = c.record;
current->max[col] = c.max;
}else{
}
if(c.eval<cMin.eval){
cMin.eval = c.eval;
if(cMin.values!=nullptr)free(cMin.values);
cMin.values = c.values;
cMin.value = c.value;
cFeature = current->featureId[i];
left = c.left;
}else if(c.values!=nullptr){
free(c.values);
}
}
if(cMin.eval == DBL_MAX){
current->terminate = true;
long max = 0;
for(i=1;i<classes;i++){
if(T[max]<T[i])max=i;
}
if(cMin.values!=nullptr)free(cMin.values);
current->result = max;
return;
}
//diverse data
current->terminate = false;
current->feature = cFeature;
current->dpoint = cMin.value;
long ptL=0, ptR=0;
//TODO:Discrete
long* resultL = new long[left];
long* resultR = new long[size-left];
double** dataL = new double*[left];
double** dataR = new double*[size-left];
for(i=low; i<low+size; i++){
if(data[i][current->feature]<=current->dpoint){
dataL[ptL] = data[i];
resultL[ptL] = result[i];
ptL++;
}else{
dataR[ptR] = data[i];
resultR[ptR] = result[i];
ptR++;
}
}
Update(dataL, resultL, ptL, current->left);
Update(dataR, resultR, ptR, current->right);
}
long DecisionTree::Test(double* data, DT* root){
if(root->terminate)return root->result;
if(data[root->feature]<=root->dpoint)return Test(data, root->left);
return Test(data, root->right);
}
void DecisionTree::print(DT* root){
int x;
//std::cin>>x;
if(root->terminate){
printf("%ld", root->result);
return;
}
printf("([%ld, %f]:", root->feature, root->dpoint);
print(root->left);
printf(", ");
print(root->right);
printf(")");
}

@ -0,0 +1,53 @@
#include "DecisionTree.h"
#include "aquery.h"
// __AQ_NO_SESSION__
#include "../server/table.h"
DecisionTree* dt = nullptr;
long pt = 0;
double** data = nullptr;
long* result = nullptr;
__AQEXPORT__(bool) newtree(int height, long f, ColRef<int> sparse, double forget, long maxf, long noclasses, Evaluation e, long r, long rb){
if(sparse.size!=f)return 0;
int* issparse = (int*)malloc(f*sizeof(int));
for(long i=0; i<f; i++){
issparse[i] = sparse.container[i];
}
if(maxf<0)maxf=f;
dt = new DecisionTree(height, f, issparse, forget, maxf, noclasses, e, r, rb);
return 1;
}
__AQEXPORT__(bool) additem(ColRef<double>X, long y, long size){
long j = 0;
if(size>0){
free(data);
free(result);
pt = 0;
data=(double**)malloc(size*sizeof(double*));
result=(long*)malloc(size*sizeof(long));
}
data[pt] = (double*)malloc(X.size*sizeof(double));
for(j=0; j<X.size; j++){
data[pt][j]=X.container[j];
}
result[pt] = y;
return 1;
}
__AQEXPORT__(bool) fit(){
if(pt<=0)return 0;
dt->fit(data, result, pt);
return 1;
}
__AQEXPORT__(ColRef_storage) predict(){
int* result = (int*)malloc(pt*sizeof(int));
for(long i=0; i<pt; i++){
result[i]=dt->Test(data[i], dt->DTree);
}
ColRef_storage ret(result, pt, pt, "prediction", 0);
return ret;
}

Binary file not shown.

@ -1,8 +1,22 @@
LOAD MODULE FROM "./test.so"
LOAD MODULE FROM "./libirf.so"
FUNCTIONS (
mydiv(a:int, b:int) -> double,
mulvec(a:int, b:vecfloat) -> vecfloat
newtree(height:int, f:int64, sparse:vecint, forget:double, maxf:int64, noclasses:int64, e:int, r:int64, rb:int64) -> bool,
additem(X:vecdouble, y:int64, size:int64) -> bool,
fit() -> bool,
predict() -> vecint
);
select mydiv(2,3);
create table tb(x int);
create table tb2(x double, y double, z double);
insert into tb values (0);
insert into tb values (0);
insert into tb values (0);
select newtree(5, 3, tb.x, 0, 3, 2, 0, 100, 1) from tb;
insert into tb2 values (1, 0, 1);
insert into tb2 values (0, 1, 1);
insert into tb2 values (1, 1, 1);
select additem(tb2.x, 1, 3) from tb2;
select additem(tb2.y, 0, -1) from tb2;
select additem(tb2.z, 1, -1) from tb2;
select fit();
select predict();

Loading…
Cancel
Save