// Copyright 2020-2022 Junekey Jeon // // The contents of this file may be used under the terms of // the Apache License v2.0 with LLVM Exceptions. // // (See accompanying file LICENSE-Apache or copy at // https://llvm.org/foundation/relicensing/LICENSE.txt) // // Alternatively, the contents of this file may be used under the terms of // the Boost Software License, Version 1.0. // (See accompanying file LICENSE-Boost or copy at // https://www.boost.org/LICENSE_1_0.txt) // // Unless required by applicable law or agreed to in writing, this software // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. #ifndef JKJ_HEADER_DRAGONBOX #define JKJ_HEADER_DRAGONBOX #include #include #include #include #include // Suppress additional buffer overrun check. // I have no idea why MSVC thinks some functions here are vulnerable to the buffer overrun // attacks. No, they aren't. #if defined(__GNUC__) || defined(__clang__) #define JKJ_SAFEBUFFERS #define JKJ_FORCEINLINE inline __attribute__((always_inline)) #elif defined(_MSC_VER) #define JKJ_SAFEBUFFERS __declspec(safebuffers) #define JKJ_FORCEINLINE __forceinline #else #define JKJ_SAFEBUFFERS #define JKJ_FORCEINLINE inline #endif #if defined(__has_builtin) #define JKJ_DRAGONBOX_HAS_BUILTIN(x) __has_builtin(x) #else #define JKJ_DRAGONBOX_HAS_BUILTIN(x) false #endif #if defined(_MSC_VER) #include #endif namespace jkj::dragonbox { namespace detail { template constexpr std::size_t physical_bits = sizeof(T) * std::numeric_limits::digits; template constexpr std::size_t value_bits = std::numeric_limits, T>>::digits; } // These classes expose encoding specs of IEEE-754-like floating-point formats. // Currently available formats are IEEE754-binary32 & IEEE754-binary64. struct ieee754_binary32 { static constexpr int significand_bits = 23; static constexpr int exponent_bits = 8; static constexpr int min_exponent = -126; static constexpr int max_exponent = 127; static constexpr int exponent_bias = -127; static constexpr int decimal_digits = 9; }; struct ieee754_binary64 { static constexpr int significand_bits = 52; static constexpr int exponent_bits = 11; static constexpr int min_exponent = -1022; static constexpr int max_exponent = 1023; static constexpr int exponent_bias = -1023; static constexpr int decimal_digits = 17; }; // A floating-point traits class defines ways to interpret a bit pattern of given size as an // encoding of floating-point number. This is a default implementation of such a traits class, // supporting ways to interpret 32-bits into a binary32-encoded floating-point number and to // interpret 64-bits into a binary64-encoded floating-point number. Users might specialize this // class to change the default behavior for certain types. template struct default_float_traits { // I don't know if there is a truly reliable way of detecting // IEEE-754 binary32/binary64 formats; I just did my best here. static_assert(std::numeric_limits::is_iec559 && std::numeric_limits::radix == 2 && (detail::physical_bits == 32 || detail::physical_bits == 64), "default_ieee754_traits only works for 32-bits or 64-bits types " "supporting binary32 or binary64 formats!"); // The type that is being viewed. using type = T; // Refers to the format specification class. using format = std::conditional_t == 32, ieee754_binary32, ieee754_binary64>; // Defines an unsigned integer type that is large enough to carry a variable of type T. // Most of the operations will be done on this integer type. using carrier_uint = std::conditional_t == 32, std::uint32_t, std::uint64_t>; static_assert(sizeof(carrier_uint) == sizeof(T)); // Number of bits in the above unsigned integer type. static constexpr int carrier_bits = int(detail::physical_bits); // Convert from carrier_uint into the original type. // Depending on the floating-point encoding format, this operation might not be possible for // some specific bit patterns. However, the contract is that u always denotes a // valid bit pattern, so this function must be assumed to be noexcept. static T carrier_to_float(carrier_uint u) noexcept { T x; std::memcpy(&x, &u, sizeof(carrier_uint)); return x; } // Same as above. static carrier_uint float_to_carrier(T x) noexcept { carrier_uint u; std::memcpy(&u, &x, sizeof(carrier_uint)); return u; } // Extract exponent bits from a bit pattern. // The result must be aligned to the LSB so that there is no additional zero paddings // on the right. This function does not do bias adjustment. static constexpr unsigned int extract_exponent_bits(carrier_uint u) noexcept { constexpr int significand_bits = format::significand_bits; constexpr int exponent_bits = format::exponent_bits; static_assert(detail::value_bits > exponent_bits); constexpr auto exponent_bits_mask = (unsigned int)(((unsigned int)(1) << exponent_bits) - 1); return (unsigned int)(u >> significand_bits) & exponent_bits_mask; } // Extract significand bits from a bit pattern. // The result must be aligned to the LSB so that there is no additional zero paddings // on the right. The result does not contain the implicit bit. static constexpr carrier_uint extract_significand_bits(carrier_uint u) noexcept { constexpr auto mask = carrier_uint((carrier_uint(1) << format::significand_bits) - 1); return carrier_uint(u & mask); } // Remove the exponent bits and extract significand bits together with the sign bit. static constexpr carrier_uint remove_exponent_bits(carrier_uint u, unsigned int exponent_bits) noexcept { return u ^ (carrier_uint(exponent_bits) << format::significand_bits); } // Shift the obtained signed significand bits to the left by 1 to remove the sign bit. static constexpr carrier_uint remove_sign_bit_and_shift(carrier_uint u) noexcept { return carrier_uint(carrier_uint(u) << 1); } // The actual value of exponent is obtained by adding this value to the extracted exponent // bits. static constexpr int exponent_bias = 1 - (1 << (carrier_bits - format::significand_bits - 2)); // Obtain the actual value of the binary exponent from the extracted exponent bits. static constexpr int binary_exponent(unsigned int exponent_bits) noexcept { if (exponent_bits == 0) { return format::min_exponent; } else { return int(exponent_bits) + format::exponent_bias; } } // Obtain the actual value of the binary exponent from the extracted significand bits and // exponent bits. static constexpr carrier_uint binary_significand(carrier_uint significand_bits, unsigned int exponent_bits) noexcept { if (exponent_bits == 0) { return significand_bits; } else { return significand_bits | (carrier_uint(1) << format::significand_bits); } } /* Various boolean observer functions */ static constexpr bool is_nonzero(carrier_uint u) noexcept { return (u << 1) != 0; } static constexpr bool is_positive(carrier_uint u) noexcept { constexpr auto sign_bit = carrier_uint(1) << (format::significand_bits + format::exponent_bits); return u < sign_bit; } static constexpr bool is_negative(carrier_uint u) noexcept { return !is_positive(u); } static constexpr bool is_finite(unsigned int exponent_bits) noexcept { constexpr unsigned int exponent_bits_all_set = (1u << format::exponent_bits) - 1; return exponent_bits != exponent_bits_all_set; } static constexpr bool has_all_zero_significand_bits(carrier_uint u) noexcept { return (u << 1) == 0; } static constexpr bool has_even_significand_bits(carrier_uint u) noexcept { return u % 2 == 0; } }; // Convenient wrappers for floating-point traits classes. // In order to reduce the argument passing overhead, these classes should be as simple as // possible (e.g., no inheritance, no private non-static data member, etc.; this is an // unfortunate fact about common ABI convention). template > struct float_bits; template > struct signed_significand_bits; template struct float_bits { using type = T; using traits_type = Traits; using carrier_uint = typename traits_type::carrier_uint; carrier_uint u; float_bits() = default; constexpr explicit float_bits(carrier_uint bit_pattern) noexcept : u{bit_pattern} {} constexpr explicit float_bits(T float_value) noexcept : u{traits_type::float_to_carrier(float_value)} {} constexpr T to_float() const noexcept { return traits_type::carrier_to_float(u); } // Extract exponent bits from a bit pattern. // The result must be aligned to the LSB so that there is no additional zero paddings // on the right. This function does not do bias adjustment. constexpr unsigned int extract_exponent_bits() const noexcept { return traits_type::extract_exponent_bits(u); } // Extract significand bits from a bit pattern. // The result must be aligned to the LSB so that there is no additional zero paddings // on the right. The result does not contain the implicit bit. constexpr carrier_uint extract_significand_bits() const noexcept { return traits_type::extract_significand_bits(u); } // Remove the exponent bits and extract significand bits together with the sign bit. constexpr auto remove_exponent_bits(unsigned int exponent_bits) const noexcept { return signed_significand_bits( traits_type::remove_exponent_bits(u, exponent_bits)); } // Obtain the actual value of the binary exponent from the extracted exponent bits. static constexpr int binary_exponent(unsigned int exponent_bits) noexcept { return traits_type::binary_exponent(exponent_bits); } constexpr int binary_exponent() const noexcept { return binary_exponent(extract_exponent_bits()); } // Obtain the actual value of the binary exponent from the extracted significand bits and // exponent bits. static constexpr carrier_uint binary_significand(carrier_uint significand_bits, unsigned int exponent_bits) noexcept { return traits_type::binary_significand(significand_bits, exponent_bits); } constexpr carrier_uint binary_significand() const noexcept { return binary_significand(extract_significand_bits(), extract_exponent_bits()); } constexpr bool is_nonzero() const noexcept { return traits_type::is_nonzero(u); } constexpr bool is_positive() const noexcept { return traits_type::is_positive(u); } constexpr bool is_negative() const noexcept { return traits_type::is_negative(u); } constexpr bool is_finite(unsigned int exponent_bits) const noexcept { return traits_type::is_finite(exponent_bits); } constexpr bool is_finite() const noexcept { return traits_type::is_finite(extract_exponent_bits()); } constexpr bool has_even_significand_bits() const noexcept { return traits_type::has_even_significand_bits(u); } }; template struct signed_significand_bits { using type = T; using traits_type = Traits; using carrier_uint = typename traits_type::carrier_uint; carrier_uint u; signed_significand_bits() = default; constexpr explicit signed_significand_bits(carrier_uint bit_pattern) noexcept : u{bit_pattern} {} // Shift the obtained signed significand bits to the left by 1 to remove the sign bit. constexpr carrier_uint remove_sign_bit_and_shift() const noexcept { return traits_type::remove_sign_bit_and_shift(u); } constexpr bool is_positive() const noexcept { return traits_type::is_positive(u); } constexpr bool is_negative() const noexcept { return traits_type::is_negative(u); } constexpr bool has_all_zero_significand_bits() const noexcept { return traits_type::has_all_zero_significand_bits(u); } constexpr bool has_even_significand_bits() const noexcept { return traits_type::has_even_significand_bits(u); } }; namespace detail { //////////////////////////////////////////////////////////////////////////////////////// // Bit operation intrinsics. //////////////////////////////////////////////////////////////////////////////////////// namespace bits { // Most compilers should be able to optimize this into the ROR instruction. inline std::uint32_t rotr(std::uint32_t n, std::uint32_t r) noexcept { r &= 31; return (n >> r) | (n << (32 - r)); } inline std::uint64_t rotr(std::uint64_t n, std::uint32_t r) noexcept { r &= 63; return (n >> r) | (n << (64 - r)); } } //////////////////////////////////////////////////////////////////////////////////////// // Utilities for wide unsigned integer arithmetic. //////////////////////////////////////////////////////////////////////////////////////// namespace wuint { // Compilers might support built-in 128-bit integer types. However, it seems that // emulating them with a pair of 64-bit integers actually produces a better code, // so we avoid using those built-ins. That said, they are still useful for // implementing 64-bit x 64-bit -> 128-bit multiplication. // clang-format off #if defined(__SIZEOF_INT128__) // To silence "error: ISO C++ does not support '__int128' for 'type name' // [-Wpedantic]" #if defined(__GNUC__) __extension__ #endif using builtin_uint128_t = unsigned __int128; #endif // clang-format on struct uint128 { uint128() = default; std::uint64_t high_; std::uint64_t low_; constexpr uint128(std::uint64_t high, std::uint64_t low) noexcept : high_{high}, low_{low} {} constexpr std::uint64_t high() const noexcept { return high_; } constexpr std::uint64_t low() const noexcept { return low_; } uint128& operator+=(std::uint64_t n) & noexcept { #if JKJ_DRAGONBOX_HAS_BUILTIN(__builtin_addcll) unsigned long long carry; low_ = __builtin_addcll(low_, n, 0, &carry); high_ = __builtin_addcll(high_, 0, carry, &carry); #elif JKJ_DRAGONBOX_HAS_BUILTIN(__builtin_ia32_addcarryx_u64) unsigned long long result; auto carry = __builtin_ia32_addcarryx_u64(0, low_, n, &result); low_ = result; __builtin_ia32_addcarryx_u64(carry, high_, 0, &result); high_ = result; #elif defined(_MSC_VER) && defined(_M_X64) auto carry = _addcarry_u64(0, low_, n, &low_); _addcarry_u64(carry, high_, 0, &high_); #else auto sum = low_ + n; high_ += (sum < low_ ? 1 : 0); low_ = sum; #endif return *this; } }; static inline std::uint64_t umul64(std::uint32_t x, std::uint32_t y) noexcept { #if defined(_MSC_VER) && defined(_M_IX86) return __emulu(x, y); #else return x * std::uint64_t(y); #endif } // Get 128-bit result of multiplication of two 64-bit unsigned integers. JKJ_SAFEBUFFERS inline uint128 umul128(std::uint64_t x, std::uint64_t y) noexcept { #if defined(__SIZEOF_INT128__) auto result = builtin_uint128_t(x) * builtin_uint128_t(y); return {std::uint64_t(result >> 64), std::uint64_t(result)}; #elif defined(_MSC_VER) && defined(_M_X64) uint128 result; result.low_ = _umul128(x, y, &result.high_); return result; #else auto a = std::uint32_t(x >> 32); auto b = std::uint32_t(x); auto c = std::uint32_t(y >> 32); auto d = std::uint32_t(y); auto ac = umul64(a, c); auto bc = umul64(b, c); auto ad = umul64(a, d); auto bd = umul64(b, d); auto intermediate = (bd >> 32) + std::uint32_t(ad) + std::uint32_t(bc); return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32), (intermediate << 32) + std::uint32_t(bd)}; #endif } JKJ_SAFEBUFFERS inline std::uint64_t umul128_upper64(std::uint64_t x, std::uint64_t y) noexcept { #if defined(__SIZEOF_INT128__) auto result = builtin_uint128_t(x) * builtin_uint128_t(y); return std::uint64_t(result >> 64); #elif defined(_MSC_VER) && defined(_M_X64) return __umulh(x, y); #else auto a = std::uint32_t(x >> 32); auto b = std::uint32_t(x); auto c = std::uint32_t(y >> 32); auto d = std::uint32_t(y); auto ac = umul64(a, c); auto bc = umul64(b, c); auto ad = umul64(a, d); auto bd = umul64(b, d); auto intermediate = (bd >> 32) + std::uint32_t(ad) + std::uint32_t(bc); return ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32); #endif } // Get upper 128-bits of multiplication of a 64-bit unsigned integer and a 128-bit // unsigned integer. JKJ_SAFEBUFFERS inline uint128 umul192_upper128(std::uint64_t x, uint128 y) noexcept { auto r = umul128(x, y.high()); r += umul128_upper64(x, y.low()); return r; } // Get upper 64-bits of multiplication of a 32-bit unsigned integer and a 64-bit // unsigned integer. inline std::uint64_t umul96_upper64(std::uint32_t x, std::uint64_t y) noexcept { #if defined(__SIZEOF_INT128__) || (defined(_MSC_VER) && defined(_M_X64)) return umul128_upper64(std::uint64_t(x) << 32, y); #else auto yh = std::uint32_t(y >> 32); auto yl = std::uint32_t(y); auto xyh = umul64(x, yh); auto xyl = umul64(x, yl); return xyh + (xyl >> 32); #endif } // Get lower 128-bits of multiplication of a 64-bit unsigned integer and a 128-bit // unsigned integer. JKJ_SAFEBUFFERS inline uint128 umul192_lower128(std::uint64_t x, uint128 y) noexcept { auto high = x * y.high(); auto high_low = umul128(x, y.low()); return {high + high_low.high(), high_low.low()}; } // Get lower 64-bits of multiplication of a 32-bit unsigned integer and a 64-bit // unsigned integer. inline std::uint64_t umul96_lower64(std::uint32_t x, std::uint64_t y) noexcept { return x * y; } } //////////////////////////////////////////////////////////////////////////////////////// // Some simple utilities for constexpr computation. //////////////////////////////////////////////////////////////////////////////////////// template constexpr Int compute_power(Int a) noexcept { static_assert(k >= 0); Int p = 1; for (int i = 0; i < k; ++i) { p *= a; } return p; } template constexpr int count_factors(UInt n) noexcept { static_assert(a > 1); int c = 0; while (n % a == 0) { n /= a; ++c; } return c; } //////////////////////////////////////////////////////////////////////////////////////// // Utilities for fast/constexpr log computation. //////////////////////////////////////////////////////////////////////////////////////// namespace log { static_assert((-1 >> 1) == -1, "right-shift for signed integers must be arithmetic"); // Compute floor(e * c - s). enum class multiply : std::uint32_t {}; enum class subtract : std::uint32_t {}; enum class shift : std::size_t {}; enum class min_exponent : std::int32_t {}; enum class max_exponent : std::int32_t {}; template constexpr int compute(int e) noexcept { assert(std::int32_t(e_min) <= e && e <= std::int32_t(e_max)); return int((std::int32_t(e) * std::int32_t(m) - std::int32_t(f)) >> std::size_t(k)); } // For constexpr computation. // Returns -1 when n = 0. template constexpr int floor_log2(UInt n) noexcept { int count = -1; while (n != 0) { ++count; n >>= 1; } return count; } static constexpr int floor_log10_pow2_min_exponent = -2620; static constexpr int floor_log10_pow2_max_exponent = 2620; constexpr int floor_log10_pow2(int e) noexcept { using namespace log; return compute(e); } static constexpr int floor_log2_pow10_min_exponent = -1233; static constexpr int floor_log2_pow10_max_exponent = 1233; constexpr int floor_log2_pow10(int e) noexcept { using namespace log; return compute(e); } static constexpr int floor_log10_pow2_minus_log10_4_over_3_min_exponent = -2985; static constexpr int floor_log10_pow2_minus_log10_4_over_3_max_exponent = 2936; constexpr int floor_log10_pow2_minus_log10_4_over_3(int e) noexcept { using namespace log; return compute(e); } static constexpr int floor_log5_pow2_min_exponent = -1831; static constexpr int floor_log5_pow2_max_exponent = 1831; constexpr int floor_log5_pow2(int e) noexcept { using namespace log; return compute(e); } static constexpr int floor_log5_pow2_minus_log5_3_min_exponent = -3543; static constexpr int floor_log5_pow2_minus_log5_3_max_exponent = 2427; constexpr int floor_log5_pow2_minus_log5_3(int e) noexcept { using namespace log; return compute(e); } } //////////////////////////////////////////////////////////////////////////////////////// // Utilities for fast divisibility tests. //////////////////////////////////////////////////////////////////////////////////////// namespace div { // Replace n by floor(n / 10^N). // Returns true if and only if n is divisible by 10^N. // Precondition: n <= 10^(N+1) // !!It takes an in-out parameter!! template struct divide_by_pow10_info; template <> struct divide_by_pow10_info<1> { static constexpr std::uint32_t magic_number = 6554; static constexpr int shift_amount = 16; }; template <> struct divide_by_pow10_info<2> { static constexpr std::uint32_t magic_number = 656; static constexpr int shift_amount = 16; }; template constexpr bool check_divisibility_and_divide_by_pow10(std::uint32_t& n) noexcept { // Make sure the computation for max_n does not overflow. static_assert(N + 1 <= log::floor_log10_pow2(31)); assert(n <= compute_power(std::uint32_t(10))); using info = divide_by_pow10_info; n *= info::magic_number; constexpr auto mask = std::uint32_t(std::uint32_t(1) << info::shift_amount) - 1; bool result = ((n & mask) < info::magic_number); n >>= info::shift_amount; return result; } // Compute floor(n / 10^N) for small n and N. // Precondition: n <= 10^(N+1) template constexpr std::uint32_t small_division_by_pow10(std::uint32_t n) noexcept { // Make sure the computation for max_n does not overflow. static_assert(N + 1 <= log::floor_log10_pow2(31)); assert(n <= compute_power(std::uint32_t(10))); return (n * divide_by_pow10_info::magic_number) >> divide_by_pow10_info::shift_amount; } // Compute floor(n / 10^N) for small N. // Precondition: n <= n_max template constexpr UInt divide_by_pow10(UInt n) noexcept { static_assert(N >= 0); // Specialize for 32-bit division by 100. // Compiler is supposed to generate the identical code for just writing // "n / 100", but for some reason MSVC generates an inefficient code // (mul + mov for no apparent reason, instead of single imul), // so we does this manually. if constexpr (std::is_same_v && N == 2) { return std::uint32_t(wuint::umul64(n, std::uint32_t(1374389535)) >> 37); } // Specialize for 64-bit division by 1000. // Ensure that the correctness condition is met. if constexpr (std::is_same_v && N == 3 && n_max <= std::uint64_t(15534100272597517998ull)) { return wuint::umul128_upper64(n, std::uint64_t(2361183241434822607ull)) >> 7; } else { constexpr auto divisor = compute_power(UInt(10)); return n / divisor; } } } } //////////////////////////////////////////////////////////////////////////////////////// // Return types for the main interface function. //////////////////////////////////////////////////////////////////////////////////////// template struct decimal_fp; template struct decimal_fp { using carrier_uint = UInt; carrier_uint significand; int exponent; }; template struct decimal_fp { using carrier_uint = UInt; carrier_uint significand; int exponent; bool is_negative; }; template struct decimal_fp { using carrier_uint = UInt; carrier_uint significand; int exponent; bool may_have_trailing_zeros; }; template struct decimal_fp { using carrier_uint = UInt; carrier_uint significand; int exponent; bool is_negative; bool may_have_trailing_zeros; }; template using unsigned_decimal_fp = decimal_fp; template using signed_decimal_fp = decimal_fp; //////////////////////////////////////////////////////////////////////////////////////// // Computed cache entries. //////////////////////////////////////////////////////////////////////////////////////// namespace detail { template struct cache_holder; template <> struct cache_holder { using cache_entry_type = std::uint64_t; static constexpr int cache_bits = 64; static constexpr int min_k = -31; static constexpr int max_k = 46; static constexpr cache_entry_type cache[] = { 0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3f, 0xfd87b5f28300ca0e, 0x9e74d1b791e07e49, 0xc612062576589ddb, 0xf79687aed3eec552, 0x9abe14cd44753b53, 0xc16d9a0095928a28, 0xf1c90080baf72cb2, 0x971da05074da7bef, 0xbce5086492111aeb, 0xec1e4a7db69561a6, 0x9392ee8e921d5d08, 0xb877aa3236a4b44a, 0xe69594bec44de15c, 0x901d7cf73ab0acda, 0xb424dc35095cd810, 0xe12e13424bb40e14, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff, 0xdbe6fecebdedd5bf, 0x89705f4136b4a598, 0xabcc77118461cefd, 0xd6bf94d5e57a42bd, 0x8637bd05af6c69b6, 0xa7c5ac471b478424, 0xd1b71758e219652c, 0x83126e978d4fdf3c, 0xa3d70a3d70a3d70b, 0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000, 0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000, 0xc350000000000000, 0xf424000000000000, 0x9896800000000000, 0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000, 0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000, 0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000, 0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000, 0xad78ebc5ac620000, 0xd8d726b7177a8000, 0x878678326eac9000, 0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0, 0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940985, 0xa18f07d736b90be6, 0xc9f2c9cd04674edf, 0xfc6f7c4045812297, 0x9dc5ada82b70b59e, 0xc5371912364ce306, 0xf684df56c3e01bc7, 0x9a130b963a6c115d, 0xc097ce7bc90715b4, 0xf0bdc21abb48db21, 0x96769950b50d88f5, 0xbc143fa4e250eb32, 0xeb194f8e1ae525fe, 0x92efd1b8d0cf37bf, 0xb7abc627050305ae, 0xe596b7b0c643c71a, 0x8f7e32ce7bea5c70, 0xb35dbf821ae4f38c, 0xe0352f62a19e306f}; }; template <> struct cache_holder { using cache_entry_type = wuint::uint128; static constexpr int cache_bits = 128; static constexpr int min_k = -292; static constexpr int max_k = 326; static constexpr cache_entry_type cache[] = { {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b}, {0x9faacf3df73609b1, 0x77b191618c54e9ad}, {0xc795830d75038c1d, 0xd59df5b9ef6a2418}, {0xf97ae3d0d2446f25, 0x4b0573286b44ad1e}, {0x9becce62836ac577, 0x4ee367f9430aec33}, {0xc2e801fb244576d5, 0x229c41f793cda740}, {0xf3a20279ed56d48a, 0x6b43527578c11110}, {0x9845418c345644d6, 0x830a13896b78aaaa}, {0xbe5691ef416bd60c, 0x23cc986bc656d554}, {0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa9}, {0x94b3a202eb1c3f39, 0x7bf7d71432f3d6aa}, {0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc54}, {0xe858ad248f5c22c9, 0xd1b3400f8f9cff69}, {0x91376c36d99995be, 0x23100809b9c21fa2}, {0xb58547448ffffb2d, 0xabd40a0c2832a78b}, {0xe2e69915b3fff9f9, 0x16c90c8f323f516d}, {0x8dd01fad907ffc3b, 0xae3da7d97f6792e4}, {0xb1442798f49ffb4a, 0x99cd11cfdf41779d}, {0xdd95317f31c7fa1d, 0x40405643d711d584}, {0x8a7d3eef7f1cfc52, 0x482835ea666b2573}, {0xad1c8eab5ee43b66, 0xda3243650005eed0}, {0xd863b256369d4a40, 0x90bed43e40076a83}, {0x873e4f75e2224e68, 0x5a7744a6e804a292}, {0xa90de3535aaae202, 0x711515d0a205cb37}, {0xd3515c2831559a83, 0x0d5a5b44ca873e04}, {0x8412d9991ed58091, 0xe858790afe9486c3}, {0xa5178fff668ae0b6, 0x626e974dbe39a873}, {0xce5d73ff402d98e3, 0xfb0a3d212dc81290}, {0x80fa687f881c7f8e, 0x7ce66634bc9d0b9a}, {0xa139029f6a239f72, 0x1c1fffc1ebc44e81}, {0xc987434744ac874e, 0xa327ffb266b56221}, {0xfbe9141915d7a922, 0x4bf1ff9f0062baa9}, {0x9d71ac8fada6c9b5, 0x6f773fc3603db4aa}, {0xc4ce17b399107c22, 0xcb550fb4384d21d4}, {0xf6019da07f549b2b, 0x7e2a53a146606a49}, {0x99c102844f94e0fb, 0x2eda7444cbfc426e}, {0xc0314325637a1939, 0xfa911155fefb5309}, {0xf03d93eebc589f88, 0x793555ab7eba27cb}, {0x96267c7535b763b5, 0x4bc1558b2f3458df}, {0xbbb01b9283253ca2, 0x9eb1aaedfb016f17}, {0xea9c227723ee8bcb, 0x465e15a979c1cadd}, {0x92a1958a7675175f, 0x0bfacd89ec191eca}, {0xb749faed14125d36, 0xcef980ec671f667c}, {0xe51c79a85916f484, 0x82b7e12780e7401b}, {0x8f31cc0937ae58d2, 0xd1b2ecb8b0908811}, {0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa16}, {0xdfbdcece67006ac9, 0x67a791e093e1d49b}, {0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e1}, {0xaecc49914078536d, 0x58fae9f773886e19}, {0xda7f5bf590966848, 0xaf39a475506a899f}, {0x888f99797a5e012d, 0x6d8406c952429604}, {0xaab37fd7d8f58178, 0xc8e5087ba6d33b84}, {0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a65}, {0x855c3be0a17fcd26, 0x5cf2eea09a550680}, {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f}, {0xd0601d8efc57b08b, 0xf13b94daf124da27}, {0x823c12795db6ce57, 0x76c53d08d6b70859}, {0xa2cb1717b52481ed, 0x54768c4b0c64ca6f}, {0xcb7ddcdda26da268, 0xa9942f5dcf7dfd0a}, {0xfe5d54150b090b02, 0xd3f93b35435d7c4d}, {0x9efa548d26e5a6e1, 0xc47bc5014a1a6db0}, {0xc6b8e9b0709f109a, 0x359ab6419ca1091c}, {0xf867241c8cc6d4c0, 0xc30163d203c94b63}, {0x9b407691d7fc44f8, 0x79e0de63425dcf1e}, {0xc21094364dfb5636, 0x985915fc12f542e5}, {0xf294b943e17a2bc4, 0x3e6f5b7b17b2939e}, {0x979cf3ca6cec5b5a, 0xa705992ceecf9c43}, {0xbd8430bd08277231, 0x50c6ff782a838354}, {0xece53cec4a314ebd, 0xa4f8bf5635246429}, {0x940f4613ae5ed136, 0x871b7795e136be9a}, {0xb913179899f68584, 0x28e2557b59846e40}, {0xe757dd7ec07426e5, 0x331aeada2fe589d0}, {0x9096ea6f3848984f, 0x3ff0d2c85def7622}, {0xb4bca50b065abe63, 0x0fed077a756b53aa}, {0xe1ebce4dc7f16dfb, 0xd3e8495912c62895}, {0x8d3360f09cf6e4bd, 0x64712dd7abbbd95d}, {0xb080392cc4349dec, 0xbd8d794d96aacfb4}, {0xdca04777f541c567, 0xecf0d7a0fc5583a1}, {0x89e42caaf9491b60, 0xf41686c49db57245}, {0xac5d37d5b79b6239, 0x311c2875c522ced6}, {0xd77485cb25823ac7, 0x7d633293366b828c}, {0x86a8d39ef77164bc, 0xae5dff9c02033198}, {0xa8530886b54dbdeb, 0xd9f57f830283fdfd}, {0xd267caa862a12d66, 0xd072df63c324fd7c}, {0x8380dea93da4bc60, 0x4247cb9e59f71e6e}, {0xa46116538d0deb78, 0x52d9be85f074e609}, {0xcd795be870516656, 0x67902e276c921f8c}, {0x806bd9714632dff6, 0x00ba1cd8a3db53b7}, {0xa086cfcd97bf97f3, 0x80e8a40eccd228a5}, {0xc8a883c0fdaf7df0, 0x6122cd128006b2ce}, {0xfad2a4b13d1b5d6c, 0x796b805720085f82}, {0x9cc3a6eec6311a63, 0xcbe3303674053bb1}, {0xc3f490aa77bd60fc, 0xbedbfc4411068a9d}, {0xf4f1b4d515acb93b, 0xee92fb5515482d45}, {0x991711052d8bf3c5, 0x751bdd152d4d1c4b}, {0xbf5cd54678eef0b6, 0xd262d45a78a0635e}, {0xef340a98172aace4, 0x86fb897116c87c35}, {0x9580869f0e7aac0e, 0xd45d35e6ae3d4da1}, {0xbae0a846d2195712, 0x8974836059cca10a}, {0xe998d258869facd7, 0x2bd1a438703fc94c}, {0x91ff83775423cc06, 0x7b6306a34627ddd0}, {0xb67f6455292cbf08, 0x1a3bc84c17b1d543}, {0xe41f3d6a7377eeca, 0x20caba5f1d9e4a94}, {0x8e938662882af53e, 0x547eb47b7282ee9d}, {0xb23867fb2a35b28d, 0xe99e619a4f23aa44}, {0xdec681f9f4c31f31, 0x6405fa00e2ec94d5}, {0x8b3c113c38f9f37e, 0xde83bc408dd3dd05}, {0xae0b158b4738705e, 0x9624ab50b148d446}, {0xd98ddaee19068c76, 0x3badd624dd9b0958}, {0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d7}, {0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4d}, {0xd47487cc8470652b, 0x7647c32000696720}, {0x84c8d4dfd2c63f3b, 0x29ecd9f40041e074}, {0xa5fb0a17c777cf09, 0xf468107100525891}, {0xcf79cc9db955c2cc, 0x7182148d4066eeb5}, {0x81ac1fe293d599bf, 0xc6f14cd848405531}, {0xa21727db38cb002f, 0xb8ada00e5a506a7d}, {0xca9cf1d206fdc03b, 0xa6d90811f0e4851d}, {0xfd442e4688bd304a, 0x908f4a166d1da664}, {0x9e4a9cec15763e2e, 0x9a598e4e043287ff}, {0xc5dd44271ad3cdba, 0x40eff1e1853f29fe}, {0xf7549530e188c128, 0xd12bee59e68ef47d}, {0x9a94dd3e8cf578b9, 0x82bb74f8301958cf}, {0xc13a148e3032d6e7, 0xe36a52363c1faf02}, {0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac2}, {0x96f5600f15a7b7e5, 0x29ab103a5ef8c0ba}, {0xbcb2b812db11a5de, 0x7415d448f6b6f0e8}, {0xebdf661791d60f56, 0x111b495b3464ad22}, {0x936b9fcebb25c995, 0xcab10dd900beec35}, {0xb84687c269ef3bfb, 0x3d5d514f40eea743}, {0xe65829b3046b0afa, 0x0cb4a5a3112a5113}, {0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ac}, {0xb3f4e093db73a093, 0x59ed216765690f57}, {0xe0f218b8d25088b8, 0x306869c13ec3532d}, {0x8c974f7383725573, 0x1e414218c73a13fc}, {0xafbd2350644eeacf, 0xe5d1929ef90898fb}, {0xdbac6c247d62a583, 0xdf45f746b74abf3a}, {0x894bc396ce5da772, 0x6b8bba8c328eb784}, {0xab9eb47c81f5114f, 0x066ea92f3f326565}, {0xd686619ba27255a2, 0xc80a537b0efefebe}, {0x8613fd0145877585, 0xbd06742ce95f5f37}, {0xa798fc4196e952e7, 0x2c48113823b73705}, {0xd17f3b51fca3a7a0, 0xf75a15862ca504c6}, {0x82ef85133de648c4, 0x9a984d73dbe722fc}, {0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebbb}, {0xcc963fee10b7d1b3, 0x318df905079926a9}, {0xffbbcfe994e5c61f, 0xfdf17746497f7053}, {0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa634}, {0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc1}, {0xf9bd690a1b68637b, 0x3dfdce7aa3c673b1}, {0x9c1661a651213e2d, 0x06bea10ca65c084f}, {0xc31bfa0fe5698db8, 0x486e494fcff30a63}, {0xf3e2f893dec3f126, 0x5a89dba3c3efccfb}, {0x986ddb5c6b3a76b7, 0xf89629465a75e01d}, {0xbe89523386091465, 0xf6bbb397f1135824}, {0xee2ba6c0678b597f, 0x746aa07ded582e2d}, {0x94db483840b717ef, 0xa8c2a44eb4571cdd}, {0xba121a4650e4ddeb, 0x92f34d62616ce414}, {0xe896a0d7e51e1566, 0x77b020baf9c81d18}, {0x915e2486ef32cd60, 0x0ace1474dc1d122f}, {0xb5b5ada8aaff80b8, 0x0d819992132456bb}, {0xe3231912d5bf60e6, 0x10e1fff697ed6c6a}, {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2}, {0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb3}, {0xddd0467c64bce4a0, 0xac7cb3f6d05ddbdf}, {0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96c}, {0xad4ab7112eb3929d, 0x86c16c98d2c953c7}, {0xd89d64d57a607744, 0xe871c7bf077ba8b8}, {0x87625f056c7c4a8b, 0x11471cd764ad4973}, {0xa93af6c6c79b5d2d, 0xd598e40d3dd89bd0}, {0xd389b47879823479, 0x4aff1d108d4ec2c4}, {0x843610cb4bf160cb, 0xcedf722a585139bb}, {0xa54394fe1eedb8fe, 0xc2974eb4ee658829}, {0xce947a3da6a9273e, 0x733d226229feea33}, {0x811ccc668829b887, 0x0806357d5a3f5260}, {0xa163ff802a3426a8, 0xca07c2dcb0cf26f8}, {0xc9bcff6034c13052, 0xfc89b393dd02f0b6}, {0xfc2c3f3841f17c67, 0xbbac2078d443ace3}, {0x9d9ba7832936edc0, 0xd54b944b84aa4c0e}, {0xc5029163f384a931, 0x0a9e795e65d4df12}, {0xf64335bcf065d37d, 0x4d4617b5ff4a16d6}, {0x99ea0196163fa42e, 0x504bced1bf8e4e46}, {0xc06481fb9bcf8d39, 0xe45ec2862f71e1d7}, {0xf07da27a82c37088, 0x5d767327bb4e5a4d}, {0x964e858c91ba2655, 0x3a6a07f8d510f870}, {0xbbe226efb628afea, 0x890489f70a55368c}, {0xeadab0aba3b2dbe5, 0x2b45ac74ccea842f}, {0x92c8ae6b464fc96f, 0x3b0b8bc90012929e}, {0xb77ada0617e3bbcb, 0x09ce6ebb40173745}, {0xe55990879ddcaabd, 0xcc420a6a101d0516}, {0x8f57fa54c2a9eab6, 0x9fa946824a12232e}, {0xb32df8e9f3546564, 0x47939822dc96abfa}, {0xdff9772470297ebd, 0x59787e2b93bc56f8}, {0x8bfbea76c619ef36, 0x57eb4edb3c55b65b}, {0xaefae51477a06b03, 0xede622920b6b23f2}, {0xdab99e59958885c4, 0xe95fab368e45ecee}, {0x88b402f7fd75539b, 0x11dbcb0218ebb415}, {0xaae103b5fcd2a881, 0xd652bdc29f26a11a}, {0xd59944a37c0752a2, 0x4be76d3346f04960}, {0x857fcae62d8493a5, 0x6f70a4400c562ddc}, {0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb953}, {0xd097ad07a71f26b2, 0x7e2000a41346a7a8}, {0x825ecc24c873782f, 0x8ed400668c0c28c9}, {0xa2f67f2dfa90563b, 0x728900802f0f32fb}, {0xcbb41ef979346bca, 0x4f2b40a03ad2ffba}, {0xfea126b7d78186bc, 0xe2f610c84987bfa9}, {0x9f24b832e6b0f436, 0x0dd9ca7d2df4d7ca}, {0xc6ede63fa05d3143, 0x91503d1c79720dbc}, {0xf8a95fcf88747d94, 0x75a44c6397ce912b}, {0x9b69dbe1b548ce7c, 0xc986afbe3ee11abb}, {0xc24452da229b021b, 0xfbe85badce996169}, {0xf2d56790ab41c2a2, 0xfae27299423fb9c4}, {0x97c560ba6b0919a5, 0xdccd879fc967d41b}, {0xbdb6b8e905cb600f, 0x5400e987bbc1c921}, {0xed246723473e3813, 0x290123e9aab23b69}, {0x9436c0760c86e30b, 0xf9a0b6720aaf6522}, {0xb94470938fa89bce, 0xf808e40e8d5b3e6a}, {0xe7958cb87392c2c2, 0xb60b1d1230b20e05}, {0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c3}, {0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af4}, {0xe2280b6c20dd5232, 0x25c6da63c38de1b1}, {0x8d590723948a535f, 0x579c487e5a38ad0f}, {0xb0af48ec79ace837, 0x2d835a9df0c6d852}, {0xdcdb1b2798182244, 0xf8e431456cf88e66}, {0x8a08f0f8bf0f156b, 0x1b8e9ecb641b5900}, {0xac8b2d36eed2dac5, 0xe272467e3d222f40}, {0xd7adf884aa879177, 0x5b0ed81dcc6abb10}, {0x86ccbb52ea94baea, 0x98e947129fc2b4ea}, {0xa87fea27a539e9a5, 0x3f2398d747b36225}, {0xd29fe4b18e88640e, 0x8eec7f0d19a03aae}, {0x83a3eeeef9153e89, 0x1953cf68300424ad}, {0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd8}, {0xcdb02555653131b6, 0x3792f412cb06794e}, {0x808e17555f3ebf11, 0xe2bbd88bbee40bd1}, {0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec5}, {0xc8de047564d20a8b, 0xf245825a5a445276}, {0xfb158592be068d2e, 0xeed6e2f0f0d56713}, {0x9ced737bb6c4183d, 0x55464dd69685606c}, {0xc428d05aa4751e4c, 0xaa97e14c3c26b887}, {0xf53304714d9265df, 0xd53dd99f4b3066a9}, {0x993fe2c6d07b7fab, 0xe546a8038efe402a}, {0xbf8fdb78849a5f96, 0xde98520472bdd034}, {0xef73d256a5c0f77c, 0x963e66858f6d4441}, {0x95a8637627989aad, 0xdde7001379a44aa9}, {0xbb127c53b17ec159, 0x5560c018580d5d53}, {0xe9d71b689dde71af, 0xaab8f01e6e10b4a7}, {0x9226712162ab070d, 0xcab3961304ca70e9}, {0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d23}, {0xe45c10c42a2b3b05, 0x8cb89a7db77c506b}, {0x8eb98a7a9a5b04e3, 0x77f3608e92adb243}, {0xb267ed1940f1c61c, 0x55f038b237591ed4}, {0xdf01e85f912e37a3, 0x6b6c46dec52f6689}, {0x8b61313bbabce2c6, 0x2323ac4b3b3da016}, {0xae397d8aa96c1b77, 0xabec975e0a0d081b}, {0xd9c7dced53c72255, 0x96e7bd358c904a22}, {0x881cea14545c7575, 0x7e50d64177da2e55}, {0xaa242499697392d2, 0xdde50bd1d5d0b9ea}, {0xd4ad2dbfc3d07787, 0x955e4ec64b44e865}, {0x84ec3c97da624ab4, 0xbd5af13bef0b113f}, {0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58f}, {0xcfb11ead453994ba, 0x67de18eda5814af3}, {0x81ceb32c4b43fcf4, 0x80eacf948770ced8}, {0xa2425ff75e14fc31, 0xa1258379a94d028e}, {0xcad2f7f5359a3b3e, 0x096ee45813a04331}, {0xfd87b5f28300ca0d, 0x8bca9d6e188853fd}, {0x9e74d1b791e07e48, 0x775ea264cf55347e}, {0xc612062576589dda, 0x95364afe032a819e}, {0xf79687aed3eec551, 0x3a83ddbd83f52205}, {0x9abe14cd44753b52, 0xc4926a9672793543}, {0xc16d9a0095928a27, 0x75b7053c0f178294}, {0xf1c90080baf72cb1, 0x5324c68b12dd6339}, {0x971da05074da7bee, 0xd3f6fc16ebca5e04}, {0xbce5086492111aea, 0x88f4bb1ca6bcf585}, {0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6}, {0x9392ee8e921d5d07, 0x3aff322e62439fd0}, {0xb877aa3236a4b449, 0x09befeb9fad487c3}, {0xe69594bec44de15b, 0x4c2ebe687989a9b4}, {0x901d7cf73ab0acd9, 0x0f9d37014bf60a11}, {0xb424dc35095cd80f, 0x538484c19ef38c95}, {0xe12e13424bb40e13, 0x2865a5f206b06fba}, {0x8cbccc096f5088cb, 0xf93f87b7442e45d4}, {0xafebff0bcb24aafe, 0xf78f69a51539d749}, {0xdbe6fecebdedd5be, 0xb573440e5a884d1c}, {0x89705f4136b4a597, 0x31680a88f8953031}, {0xabcc77118461cefc, 0xfdc20d2b36ba7c3e}, {0xd6bf94d5e57a42bc, 0x3d32907604691b4d}, {0x8637bd05af6c69b5, 0xa63f9a49c2c1b110}, {0xa7c5ac471b478423, 0x0fcf80dc33721d54}, {0xd1b71758e219652b, 0xd3c36113404ea4a9}, {0x83126e978d4fdf3b, 0x645a1cac083126ea}, {0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4}, {0xcccccccccccccccc, 0xcccccccccccccccd}, {0x8000000000000000, 0x0000000000000000}, {0xa000000000000000, 0x0000000000000000}, {0xc800000000000000, 0x0000000000000000}, {0xfa00000000000000, 0x0000000000000000}, {0x9c40000000000000, 0x0000000000000000}, {0xc350000000000000, 0x0000000000000000}, {0xf424000000000000, 0x0000000000000000}, {0x9896800000000000, 0x0000000000000000}, {0xbebc200000000000, 0x0000000000000000}, {0xee6b280000000000, 0x0000000000000000}, {0x9502f90000000000, 0x0000000000000000}, {0xba43b74000000000, 0x0000000000000000}, {0xe8d4a51000000000, 0x0000000000000000}, {0x9184e72a00000000, 0x0000000000000000}, {0xb5e620f480000000, 0x0000000000000000}, {0xe35fa931a0000000, 0x0000000000000000}, {0x8e1bc9bf04000000, 0x0000000000000000}, {0xb1a2bc2ec5000000, 0x0000000000000000}, {0xde0b6b3a76400000, 0x0000000000000000}, {0x8ac7230489e80000, 0x0000000000000000}, {0xad78ebc5ac620000, 0x0000000000000000}, {0xd8d726b7177a8000, 0x0000000000000000}, {0x878678326eac9000, 0x0000000000000000}, {0xa968163f0a57b400, 0x0000000000000000}, {0xd3c21bcecceda100, 0x0000000000000000}, {0x84595161401484a0, 0x0000000000000000}, {0xa56fa5b99019a5c8, 0x0000000000000000}, {0xcecb8f27f4200f3a, 0x0000000000000000}, {0x813f3978f8940984, 0x4000000000000000}, {0xa18f07d736b90be5, 0x5000000000000000}, {0xc9f2c9cd04674ede, 0xa400000000000000}, {0xfc6f7c4045812296, 0x4d00000000000000}, {0x9dc5ada82b70b59d, 0xf020000000000000}, {0xc5371912364ce305, 0x6c28000000000000}, {0xf684df56c3e01bc6, 0xc732000000000000}, {0x9a130b963a6c115c, 0x3c7f400000000000}, {0xc097ce7bc90715b3, 0x4b9f100000000000}, {0xf0bdc21abb48db20, 0x1e86d40000000000}, {0x96769950b50d88f4, 0x1314448000000000}, {0xbc143fa4e250eb31, 0x17d955a000000000}, {0xeb194f8e1ae525fd, 0x5dcfab0800000000}, {0x92efd1b8d0cf37be, 0x5aa1cae500000000}, {0xb7abc627050305ad, 0xf14a3d9e40000000}, {0xe596b7b0c643c719, 0x6d9ccd05d0000000}, {0x8f7e32ce7bea5c6f, 0xe4820023a2000000}, {0xb35dbf821ae4f38b, 0xdda2802c8a800000}, {0xe0352f62a19e306e, 0xd50b2037ad200000}, {0x8c213d9da502de45, 0x4526f422cc340000}, {0xaf298d050e4395d6, 0x9670b12b7f410000}, {0xdaf3f04651d47b4c, 0x3c0cdd765f114000}, {0x88d8762bf324cd0f, 0xa5880a69fb6ac800}, {0xab0e93b6efee0053, 0x8eea0d047a457a00}, {0xd5d238a4abe98068, 0x72a4904598d6d880}, {0x85a36366eb71f041, 0x47a6da2b7f864750}, {0xa70c3c40a64e6c51, 0x999090b65f67d924}, {0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d}, {0x82818f1281ed449f, 0xbff8f10e7a8921a5}, {0xa321f2d7226895c7, 0xaff72d52192b6a0e}, {0xcbea6f8ceb02bb39, 0x9bf4f8a69f764491}, {0xfee50b7025c36a08, 0x02f236d04753d5b5}, {0x9f4f2726179a2245, 0x01d762422c946591}, {0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef6}, {0xf8ebad2b84e0d58b, 0xd2e0898765a7deb3}, {0x9b934c3b330c8577, 0x63cc55f49f88eb30}, {0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fc}, {0xf316271c7fc3908a, 0x8bef464e3945ef7b}, {0x97edd871cfda3a56, 0x97758bf0e3cbb5ad}, {0xbde94e8e43d0c8ec, 0x3d52eeed1cbea318}, {0xed63a231d4c4fb27, 0x4ca7aaa863ee4bde}, {0x945e455f24fb1cf8, 0x8fe8caa93e74ef6b}, {0xb975d6b6ee39e436, 0xb3e2fd538e122b45}, {0xe7d34c64a9c85d44, 0x60dbbca87196b617}, {0x90e40fbeea1d3a4a, 0xbc8955e946fe31ce}, {0xb51d13aea4a488dd, 0x6babab6398bdbe42}, {0xe264589a4dcdab14, 0xc696963c7eed2dd2}, {0x8d7eb76070a08aec, 0xfc1e1de5cf543ca3}, {0xb0de65388cc8ada8, 0x3b25a55f43294bcc}, {0xdd15fe86affad912, 0x49ef0eb713f39ebf}, {0x8a2dbf142dfcc7ab, 0x6e3569326c784338}, {0xacb92ed9397bf996, 0x49c2c37f07965405}, {0xd7e77a8f87daf7fb, 0xdc33745ec97be907}, {0x86f0ac99b4e8dafd, 0x69a028bb3ded71a4}, {0xa8acd7c0222311bc, 0xc40832ea0d68ce0d}, {0xd2d80db02aabd62b, 0xf50a3fa490c30191}, {0x83c7088e1aab65db, 0x792667c6da79e0fb}, {0xa4b8cab1a1563f52, 0x577001b891185939}, {0xcde6fd5e09abcf26, 0xed4c0226b55e6f87}, {0x80b05e5ac60b6178, 0x544f8158315b05b5}, {0xa0dc75f1778e39d6, 0x696361ae3db1c722}, {0xc913936dd571c84c, 0x03bc3a19cd1e38ea}, {0xfb5878494ace3a5f, 0x04ab48a04065c724}, {0x9d174b2dcec0e47b, 0x62eb0d64283f9c77}, {0xc45d1df942711d9a, 0x3ba5d0bd324f8395}, {0xf5746577930d6500, 0xca8f44ec7ee3647a}, {0x9968bf6abbe85f20, 0x7e998b13cf4e1ecc}, {0xbfc2ef456ae276e8, 0x9e3fedd8c321a67f}, {0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101f}, {0x95d04aee3b80ece5, 0xbba1f1d158724a13}, {0xbb445da9ca61281f, 0x2a8a6e45ae8edc98}, {0xea1575143cf97226, 0xf52d09d71a3293be}, {0x924d692ca61be758, 0x593c2626705f9c57}, {0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836d}, {0xe498f455c38b997a, 0x0b6dfb9c0f956448}, {0x8edf98b59a373fec, 0x4724bd4189bd5ead}, {0xb2977ee300c50fe7, 0x58edec91ec2cb658}, {0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ee}, {0x8b865b215899f46c, 0xbd79e0d20082ee75}, {0xae67f1e9aec07187, 0xecd8590680a3aa12}, {0xda01ee641a708de9, 0xe80e6f4820cc9496}, {0x884134fe908658b2, 0x3109058d147fdcde}, {0xaa51823e34a7eede, 0xbd4b46f0599fd416}, {0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91b}, {0x850fadc09923329e, 0x03e2cf6bc604ddb1}, {0xa6539930bf6bff45, 0x84db8346b786151d}, {0xcfe87f7cef46ff16, 0xe612641865679a64}, {0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07f}, {0xa26da3999aef7749, 0xe3be5e330f38f09e}, {0xcb090c8001ab551c, 0x5cadf5bfd3072cc6}, {0xfdcb4fa002162a63, 0x73d9732fc7c8f7f7}, {0x9e9f11c4014dda7e, 0x2867e7fddcdd9afb}, {0xc646d63501a1511d, 0xb281e1fd541501b9}, {0xf7d88bc24209a565, 0x1f225a7ca91a4227}, {0x9ae757596946075f, 0x3375788de9b06959}, {0xc1a12d2fc3978937, 0x0052d6b1641c83af}, {0xf209787bb47d6b84, 0xc0678c5dbd23a49b}, {0x9745eb4d50ce6332, 0xf840b7ba963646e1}, {0xbd176620a501fbff, 0xb650e5a93bc3d899}, {0xec5d3fa8ce427aff, 0xa3e51f138ab4cebf}, {0x93ba47c980e98cdf, 0xc66f336c36b10138}, {0xb8a8d9bbe123f017, 0xb80b0047445d4185}, {0xe6d3102ad96cec1d, 0xa60dc059157491e6}, {0x9043ea1ac7e41392, 0x87c89837ad68db30}, {0xb454e4a179dd1877, 0x29babe4598c311fc}, {0xe16a1dc9d8545e94, 0xf4296dd6fef3d67b}, {0x8ce2529e2734bb1d, 0x1899e4a65f58660d}, {0xb01ae745b101e9e4, 0x5ec05dcff72e7f90}, {0xdc21a1171d42645d, 0x76707543f4fa1f74}, {0x899504ae72497eba, 0x6a06494a791c53a9}, {0xabfa45da0edbde69, 0x0487db9d17636893}, {0xd6f8d7509292d603, 0x45a9d2845d3c42b7}, {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b3}, {0xa7f26836f282b732, 0x8e6cac7768d7141f}, {0xd1ef0244af2364ff, 0x3207d795430cd927}, {0x8335616aed761f1f, 0x7f44e6bd49e807b9}, {0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a7}, {0xcd036837130890a1, 0x36dba887c37a8c10}, {0x802221226be55a64, 0xc2494954da2c978a}, {0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6d}, {0xc83553c5c8965d3d, 0x6f92829494e5acc8}, {0xfa42a8b73abbf48c, 0xcb772339ba1f17fa}, {0x9c69a97284b578d7, 0xff2a760414536efc}, {0xc38413cf25e2d70d, 0xfef5138519684abb}, {0xf46518c2ef5b8cd1, 0x7eb258665fc25d6a}, {0x98bf2f79d5993802, 0xef2f773ffbd97a62}, {0xbeeefb584aff8603, 0xaafb550ffacfd8fb}, {0xeeaaba2e5dbf6784, 0x95ba2a53f983cf39}, {0x952ab45cfa97a0b2, 0xdd945a747bf26184}, {0xba756174393d88df, 0x94f971119aeef9e5}, {0xe912b9d1478ceb17, 0x7a37cd5601aab85e}, {0x91abb422ccb812ee, 0xac62e055c10ab33b}, {0xb616a12b7fe617aa, 0x577b986b314d600a}, {0xe39c49765fdf9d94, 0xed5a7e85fda0b80c}, {0x8e41ade9fbebc27d, 0x14588f13be847308}, {0xb1d219647ae6b31c, 0x596eb2d8ae258fc9}, {0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bc}, {0x8aec23d680043bee, 0x25de7bb9480d5855}, {0xada72ccc20054ae9, 0xaf561aa79a10ae6b}, {0xd910f7ff28069da4, 0x1b2ba1518094da05}, {0x87aa9aff79042286, 0x90fb44d2f05d0843}, {0xa99541bf57452b28, 0x353a1607ac744a54}, {0xd3fa922f2d1675f2, 0x42889b8997915ce9}, {0x847c9b5d7c2e09b7, 0x69956135febada12}, {0xa59bc234db398c25, 0x43fab9837e699096}, {0xcf02b2c21207ef2e, 0x94f967e45e03f4bc}, {0x8161afb94b44f57d, 0x1d1be0eebac278f6}, {0xa1ba1ba79e1632dc, 0x6462d92a69731733}, {0xca28a291859bbf93, 0x7d7b8f7503cfdcff}, {0xfcb2cb35e702af78, 0x5cda735244c3d43f}, {0x9defbf01b061adab, 0x3a0888136afa64a8}, {0xc56baec21c7a1916, 0x088aaa1845b8fdd1}, {0xf6c69a72a3989f5b, 0x8aad549e57273d46}, {0x9a3c2087a63f6399, 0x36ac54e2f678864c}, {0xc0cb28a98fcf3c7f, 0x84576a1bb416a7de}, {0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d6}, {0x969eb7c47859e743, 0x9f644ae5a4b1b326}, {0xbc4665b596706114, 0x873d5d9f0dde1fef}, {0xeb57ff22fc0c7959, 0xa90cb506d155a7eb}, {0x9316ff75dd87cbd8, 0x09a7f12442d588f3}, {0xb7dcbf5354e9bece, 0x0c11ed6d538aeb30}, {0xe5d3ef282a242e81, 0x8f1668c8a86da5fb}, {0x8fa475791a569d10, 0xf96e017d694487bd}, {0xb38d92d760ec4455, 0x37c981dcc395a9ad}, {0xe070f78d3927556a, 0x85bbe253f47b1418}, {0x8c469ab843b89562, 0x93956d7478ccec8f}, {0xaf58416654a6babb, 0x387ac8d1970027b3}, {0xdb2e51bfe9d0696a, 0x06997b05fcc0319f}, {0x88fcf317f22241e2, 0x441fece3bdf81f04}, {0xab3c2fddeeaad25a, 0xd527e81cad7626c4}, {0xd60b3bd56a5586f1, 0x8a71e223d8d3b075}, {0x85c7056562757456, 0xf6872d5667844e4a}, {0xa738c6bebb12d16c, 0xb428f8ac016561dc}, {0xd106f86e69d785c7, 0xe13336d701beba53}, {0x82a45b450226b39c, 0xecc0024661173474}, {0xa34d721642b06084, 0x27f002d7f95d0191}, {0xcc20ce9bd35c78a5, 0x31ec038df7b441f5}, {0xff290242c83396ce, 0x7e67047175a15272}, {0x9f79a169bd203e41, 0x0f0062c6e984d387}, {0xc75809c42c684dd1, 0x52c07b78a3e60869}, {0xf92e0c3537826145, 0xa7709a56ccdf8a83}, {0x9bbcc7a142b17ccb, 0x88a66076400bb692}, {0xc2abf989935ddbfe, 0x6acff893d00ea436}, {0xf356f7ebf83552fe, 0x0583f6b8c4124d44}, {0x98165af37b2153de, 0xc3727a337a8b704b}, {0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5d}, {0xeda2ee1c7064130c, 0x1162def06f79df74}, {0x9485d4d1c63e8be7, 0x8addcb5645ac2ba9}, {0xb9a74a0637ce2ee1, 0x6d953e2bd7173693}, {0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0438}, {0x910ab1d4db9914a0, 0x1d9c9892400a22a3}, {0xb54d5e4a127f59c8, 0x2503beb6d00cab4c}, {0xe2a0b5dc971f303a, 0x2e44ae64840fd61e}, {0x8da471a9de737e24, 0x5ceaecfed289e5d3}, {0xb10d8e1456105dad, 0x7425a83e872c5f48}, {0xdd50f1996b947518, 0xd12f124e28f7771a}, {0x8a5296ffe33cc92f, 0x82bd6b70d99aaa70}, {0xace73cbfdc0bfb7b, 0x636cc64d1001550c}, {0xd8210befd30efa5a, 0x3c47f7e05401aa4f}, {0x8714a775e3e95c78, 0x65acfaec34810a72}, {0xa8d9d1535ce3b396, 0x7f1839a741a14d0e}, {0xd31045a8341ca07c, 0x1ede48111209a051}, {0x83ea2b892091e44d, 0x934aed0aab460433}, {0xa4e4b66b68b65d60, 0xf81da84d56178540}, {0xce1de40642e3f4b9, 0x36251260ab9d668f}, {0x80d2ae83e9ce78f3, 0xc1d72b7c6b42601a}, {0xa1075a24e4421730, 0xb24cf65b8612f820}, {0xc94930ae1d529cfc, 0xdee033f26797b628}, {0xfb9b7cd9a4a7443c, 0x169840ef017da3b2}, {0x9d412e0806e88aa5, 0x8e1f289560ee864f}, {0xc491798a08a2ad4e, 0xf1a6f2bab92a27e3}, {0xf5b5d7ec8acb58a2, 0xae10af696774b1dc}, {0x9991a6f3d6bf1765, 0xacca6da1e0a8ef2a}, {0xbff610b0cc6edd3f, 0x17fd090a58d32af4}, {0xeff394dcff8a948e, 0xddfc4b4cef07f5b1}, {0x95f83d0a1fb69cd9, 0x4abdaf101564f98f}, {0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f2}, {0xea53df5fd18d5513, 0x84c86189216dc5ee}, {0x92746b9be2f8552c, 0x32fd3cf5b4e49bb5}, {0xb7118682dbb66a77, 0x3fbc8c33221dc2a2}, {0xe4d5e82392a40515, 0x0fabaf3feaa5334b}, {0x8f05b1163ba6832d, 0x29cb4d87f2a7400f}, {0xb2c71d5bca9023f8, 0x743e20e9ef511013}, {0xdf78e4b2bd342cf6, 0x914da9246b255417}, {0x8bab8eefb6409c1a, 0x1ad089b6c2f7548f}, {0xae9672aba3d0c320, 0xa184ac2473b529b2}, {0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741f}, {0x8865899617fb1871, 0x7e2fa67c7a658893}, {0xaa7eebfb9df9de8d, 0xddbb901b98feeab8}, {0xd51ea6fa85785631, 0x552a74227f3ea566}, {0x8533285c936b35de, 0xd53a88958f872760}, {0xa67ff273b8460356, 0x8a892abaf368f138}, {0xd01fef10a657842c, 0x2d2b7569b0432d86}, {0x8213f56a67f6b29b, 0x9c3b29620e29fc74}, {0xa298f2c501f45f42, 0x8349f3ba91b47b90}, {0xcb3f2f7642717713, 0x241c70a936219a74}, {0xfe0efb53d30dd4d7, 0xed238cd383aa0111}, {0x9ec95d1463e8a506, 0xf4363804324a40ab}, {0xc67bb4597ce2ce48, 0xb143c6053edcd0d6}, {0xf81aa16fdc1b81da, 0xdd94b7868e94050b}, {0x9b10a4e5e9913128, 0xca7cf2b4191c8327}, {0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f1}, {0xf24a01a73cf2dccf, 0xbc633b39673c8ced}, {0x976e41088617ca01, 0xd5be0503e085d814}, {0xbd49d14aa79dbc82, 0x4b2d8644d8a74e19}, {0xec9c459d51852ba2, 0xddf8e7d60ed1219f}, {0x93e1ab8252f33b45, 0xcabb90e5c942b504}, {0xb8da1662e7b00a17, 0x3d6a751f3b936244}, {0xe7109bfba19c0c9d, 0x0cc512670a783ad5}, {0x906a617d450187e2, 0x27fb2b80668b24c6}, {0xb484f9dc9641e9da, 0xb1f9f660802dedf7}, {0xe1a63853bbd26451, 0x5e7873f8a0396974}, {0x8d07e33455637eb2, 0xdb0b487b6423e1e9}, {0xb049dc016abc5e5f, 0x91ce1a9a3d2cda63}, {0xdc5c5301c56b75f7, 0x7641a140cc7810fc}, {0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9e}, {0xac2820d9623bf429, 0x546345fa9fbdcd45}, {0xd732290fbacaf133, 0xa97c177947ad4096}, {0x867f59a9d4bed6c0, 0x49ed8eabcccc485e}, {0xa81f301449ee8c70, 0x5c68f256bfff5a75}, {0xd226fc195c6a2f8c, 0x73832eec6fff3112}, {0x83585d8fd9c25db7, 0xc831fd53c5ff7eac}, {0xa42e74f3d032f525, 0xba3e7ca8b77f5e56}, {0xcd3a1230c43fb26f, 0x28ce1bd2e55f35ec}, {0x80444b5e7aa7cf85, 0x7980d163cf5b81b4}, {0xa0555e361951c366, 0xd7e105bcc3326220}, {0xc86ab5c39fa63440, 0x8dd9472bf3fefaa8}, {0xfa856334878fc150, 0xb14f98f6f0feb952}, {0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d4}, {0xc3b8358109e84f07, 0x0a862f80ec4700c9}, {0xf4a642e14c6262c8, 0xcd27bb612758c0fb}, {0x98e7e9cccfbd7dbd, 0x8038d51cb897789d}, {0xbf21e44003acdd2c, 0xe0470a63e6bd56c4}, {0xeeea5d5004981478, 0x1858ccfce06cac75}, {0x95527a5202df0ccb, 0x0f37801e0c43ebc9}, {0xbaa718e68396cffd, 0xd30560258f54e6bb}, {0xe950df20247c83fd, 0x47c6b82ef32a206a}, {0x91d28b7416cdd27e, 0x4cdc331d57fa5442}, {0xb6472e511c81471d, 0xe0133fe4adf8e953}, {0xe3d8f9e563a198e5, 0x58180fddd97723a7}, {0x8e679c2f5e44ff8f, 0x570f09eaa7ea7649}, {0xb201833b35d63f73, 0x2cd2cc6551e513db}, {0xde81e40a034bcf4f, 0xf8077f7ea65e58d2}, {0x8b112e86420f6191, 0xfb04afaf27faf783}, {0xadd57a27d29339f6, 0x79c5db9af1f9b564}, {0xd94ad8b1c7380874, 0x18375281ae7822bd}, {0x87cec76f1c830548, 0x8f2293910d0b15b6}, {0xa9c2794ae3a3c69a, 0xb2eb3875504ddb23}, {0xd433179d9c8cb841, 0x5fa60692a46151ec}, {0x849feec281d7f328, 0xdbc7c41ba6bcd334}, {0xa5c7ea73224deff3, 0x12b9b522906c0801}, {0xcf39e50feae16bef, 0xd768226b34870a01}, {0x81842f29f2cce375, 0xe6a1158300d46641}, {0xa1e53af46f801c53, 0x60495ae3c1097fd1}, {0xca5e89b18b602368, 0x385bb19cb14bdfc5}, {0xfcf62c1dee382c42, 0x46729e03dd9ed7b6}, {0x9e19db92b4e31ba9, 0x6c07a2c26a8346d2}, {0xc5a05277621be293, 0xc7098b7305241886}, {0xf70867153aa2db38, 0xb8cbee4fc66d1ea8}}; }; // Compressed cache for double struct compressed_cache_detail { static constexpr int compression_ratio = 27; static constexpr std::size_t compressed_table_size = (cache_holder::max_k - cache_holder::min_k + compression_ratio) / compression_ratio; struct cache_holder_t { wuint::uint128 table[compressed_table_size]; }; static constexpr cache_holder_t cache = [] { cache_holder_t res{}; for (std::size_t i = 0; i < compressed_table_size; ++i) { res.table[i] = cache_holder::cache[i * compression_ratio]; } return res; }(); struct pow5_holder_t { std::uint64_t table[compression_ratio]; }; static constexpr pow5_holder_t pow5 = [] { pow5_holder_t res{}; std::uint64_t p = 1; for (std::size_t i = 0; i < compression_ratio; ++i) { res.table[i] = p; p *= 5; } return res; }(); }; } //////////////////////////////////////////////////////////////////////////////////////// // Policies. //////////////////////////////////////////////////////////////////////////////////////// namespace detail { // Forward declare the implementation class. template > struct impl; namespace policy_impl { // Sign policies. namespace sign { struct base {}; struct ignore : base { using sign_policy = ignore; static constexpr bool return_has_sign = false; template static constexpr void handle_sign(SignedSignificandBits, ReturnType&) noexcept { } }; struct return_sign : base { using sign_policy = return_sign; static constexpr bool return_has_sign = true; template static constexpr void handle_sign(SignedSignificandBits s, ReturnType& r) noexcept { r.is_negative = s.is_negative(); } }; } // Trailing zero policies. namespace trailing_zero { struct base {}; struct ignore : base { using trailing_zero_policy = ignore; static constexpr bool report_trailing_zeros = false; template static constexpr void on_trailing_zeros(ReturnType&) noexcept {} template static constexpr void no_trailing_zeros(ReturnType&) noexcept {} }; struct remove : base { using trailing_zero_policy = remove; static constexpr bool report_trailing_zeros = false; template JKJ_FORCEINLINE static constexpr void on_trailing_zeros(ReturnType& r) noexcept { r.exponent += Impl::remove_trailing_zeros(r.significand); } template static constexpr void no_trailing_zeros(ReturnType&) noexcept {} }; struct report : base { using trailing_zero_policy = report; static constexpr bool report_trailing_zeros = true; template static constexpr void on_trailing_zeros(ReturnType& r) noexcept { r.may_have_trailing_zeros = true; } template static constexpr void no_trailing_zeros(ReturnType& r) noexcept { r.may_have_trailing_zeros = false; } }; } // Decimal-to-binary rounding mode policies. namespace decimal_to_binary_rounding { struct base {}; enum class tag_t { to_nearest, left_closed_directed, right_closed_directed }; namespace interval_type { struct symmetric_boundary { static constexpr bool is_symmetric = true; bool is_closed; constexpr bool include_left_endpoint() const noexcept { return is_closed; } constexpr bool include_right_endpoint() const noexcept { return is_closed; } }; struct asymmetric_boundary { static constexpr bool is_symmetric = false; bool is_left_closed; constexpr bool include_left_endpoint() const noexcept { return is_left_closed; } constexpr bool include_right_endpoint() const noexcept { return !is_left_closed; } }; struct closed { static constexpr bool is_symmetric = true; static constexpr bool include_left_endpoint() noexcept { return true; } static constexpr bool include_right_endpoint() noexcept { return true; } }; struct open { static constexpr bool is_symmetric = true; static constexpr bool include_left_endpoint() noexcept { return false; } static constexpr bool include_right_endpoint() noexcept { return false; } }; struct left_closed_right_open { static constexpr bool is_symmetric = false; static constexpr bool include_left_endpoint() noexcept { return true; } static constexpr bool include_right_endpoint() noexcept { return false; } }; struct right_closed_left_open { static constexpr bool is_symmetric = false; static constexpr bool include_left_endpoint() noexcept { return false; } static constexpr bool include_right_endpoint() noexcept { return true; } }; } struct nearest_to_even : base { using decimal_to_binary_rounding_policy = nearest_to_even; static constexpr auto tag = tag_t::to_nearest; using normal_interval_type = interval_type::symmetric_boundary; using shorter_interval_type = interval_type::closed; template JKJ_FORCEINLINE static auto delegate(SignedSignificandBits, Func&& f) noexcept { return f(nearest_to_even{}); } template JKJ_FORCEINLINE static constexpr auto invoke_normal_interval_case(SignedSignificandBits s, Func&& f) noexcept { return f(s.has_even_significand_bits()); } template JKJ_FORCEINLINE static constexpr auto invoke_shorter_interval_case(SignedSignificandBits, Func&& f) noexcept { return f(); } }; struct nearest_to_odd : base { using decimal_to_binary_rounding_policy = nearest_to_odd; static constexpr auto tag = tag_t::to_nearest; using normal_interval_type = interval_type::symmetric_boundary; using shorter_interval_type = interval_type::open; template JKJ_FORCEINLINE static auto delegate(SignedSignificandBits, Func&& f) noexcept { return f(nearest_to_odd{}); } template JKJ_FORCEINLINE static constexpr auto invoke_normal_interval_case(SignedSignificandBits s, Func&& f) noexcept { return f(!s.has_even_significand_bits()); } template JKJ_FORCEINLINE static constexpr auto invoke_shorter_interval_case(SignedSignificandBits, Func&& f) noexcept { return f(); } }; struct nearest_toward_plus_infinity : base { using decimal_to_binary_rounding_policy = nearest_toward_plus_infinity; static constexpr auto tag = tag_t::to_nearest; using normal_interval_type = interval_type::asymmetric_boundary; using shorter_interval_type = interval_type::asymmetric_boundary; template JKJ_FORCEINLINE static auto delegate(SignedSignificandBits, Func&& f) noexcept { return f(nearest_toward_plus_infinity{}); } template JKJ_FORCEINLINE static constexpr auto invoke_normal_interval_case(SignedSignificandBits s, Func&& f) noexcept { return f(!s.is_negative()); } template JKJ_FORCEINLINE static constexpr auto invoke_shorter_interval_case(SignedSignificandBits s, Func&& f) noexcept { return f(!s.is_negative()); } }; struct nearest_toward_minus_infinity : base { using decimal_to_binary_rounding_policy = nearest_toward_minus_infinity; static constexpr auto tag = tag_t::to_nearest; using normal_interval_type = interval_type::asymmetric_boundary; using shorter_interval_type = interval_type::asymmetric_boundary; template JKJ_FORCEINLINE static auto delegate(SignedSignificandBits, Func&& f) noexcept { return f(nearest_toward_minus_infinity{}); } template JKJ_FORCEINLINE static constexpr auto invoke_normal_interval_case(SignedSignificandBits s, Func&& f) noexcept { return f(s.is_negative()); } template JKJ_FORCEINLINE static constexpr auto invoke_shorter_interval_case(SignedSignificandBits s, Func&& f) noexcept { return f(s.is_negative()); } }; struct nearest_toward_zero : base { using decimal_to_binary_rounding_policy = nearest_toward_zero; static constexpr auto tag = tag_t::to_nearest; using normal_interval_type = interval_type::right_closed_left_open; using shorter_interval_type = interval_type::right_closed_left_open; template JKJ_FORCEINLINE static auto delegate(SignedSignificandBits, Func&& f) noexcept { return f(nearest_toward_zero{}); } template JKJ_FORCEINLINE static constexpr auto invoke_normal_interval_case(SignedSignificandBits, Func&& f) noexcept { return f(); } template JKJ_FORCEINLINE static constexpr auto invoke_shorter_interval_case(SignedSignificandBits, Func&& f) noexcept { return f(); } }; struct nearest_away_from_zero : base { using decimal_to_binary_rounding_policy = nearest_away_from_zero; static constexpr auto tag = tag_t::to_nearest; using normal_interval_type = interval_type::left_closed_right_open; using shorter_interval_type = interval_type::left_closed_right_open; template JKJ_FORCEINLINE static auto delegate(SignedSignificandBits, Func&& f) noexcept { return f(nearest_away_from_zero{}); } template JKJ_FORCEINLINE static constexpr auto invoke_normal_interval_case(SignedSignificandBits, Func&& f) noexcept { return f(); } template JKJ_FORCEINLINE static constexpr auto invoke_shorter_interval_case(SignedSignificandBits, Func&& f) noexcept { return f(); } }; namespace detail { struct nearest_always_closed { static constexpr auto tag = tag_t::to_nearest; using normal_interval_type = interval_type::closed; using shorter_interval_type = interval_type::closed; template JKJ_FORCEINLINE static constexpr auto invoke_normal_interval_case(SignedSignificandBits, Func&& f) noexcept { return f(); } template JKJ_FORCEINLINE static constexpr auto invoke_shorter_interval_case(SignedSignificandBits, Func&& f) noexcept { return f(); } }; struct nearest_always_open { static constexpr auto tag = tag_t::to_nearest; using normal_interval_type = interval_type::open; using shorter_interval_type = interval_type::open; template JKJ_FORCEINLINE static constexpr auto invoke_normal_interval_case(SignedSignificandBits, Func&& f) noexcept { return f(); } template JKJ_FORCEINLINE static constexpr auto invoke_shorter_interval_case(SignedSignificandBits, Func&& f) noexcept { return f(); } }; } struct nearest_to_even_static_boundary : base { using decimal_to_binary_rounding_policy = nearest_to_even_static_boundary; template JKJ_FORCEINLINE static auto delegate(SignedSignificandBits s, Func&& f) noexcept { if (s.has_even_significand_bits()) { return f(detail::nearest_always_closed{}); } else { return f(detail::nearest_always_open{}); } } }; struct nearest_to_odd_static_boundary : base { using decimal_to_binary_rounding_policy = nearest_to_odd_static_boundary; template JKJ_FORCEINLINE static auto delegate(SignedSignificandBits s, Func&& f) noexcept { if (s.has_even_significand_bits()) { return f(detail::nearest_always_open{}); } else { return f(detail::nearest_always_closed{}); } } }; struct nearest_toward_plus_infinity_static_boundary : base { using decimal_to_binary_rounding_policy = nearest_toward_plus_infinity_static_boundary; template JKJ_FORCEINLINE static auto delegate(SignedSignificandBits s, Func&& f) noexcept { if (s.is_negative()) { return f(nearest_toward_zero{}); } else { return f(nearest_away_from_zero{}); } } }; struct nearest_toward_minus_infinity_static_boundary : base { using decimal_to_binary_rounding_policy = nearest_toward_minus_infinity_static_boundary; template JKJ_FORCEINLINE static auto delegate(SignedSignificandBits s, Func&& f) noexcept { if (s.is_negative()) { return f(nearest_away_from_zero{}); } else { return f(nearest_toward_zero{}); } } }; namespace detail { struct left_closed_directed { static constexpr auto tag = tag_t::left_closed_directed; }; struct right_closed_directed { static constexpr auto tag = tag_t::right_closed_directed; }; } struct toward_plus_infinity : base { using decimal_to_binary_rounding_policy = toward_plus_infinity; template JKJ_FORCEINLINE static auto delegate(SignedSignificandBits s, Func&& f) noexcept { if (s.is_negative()) { return f(detail::left_closed_directed{}); } else { return f(detail::right_closed_directed{}); } } }; struct toward_minus_infinity : base { using decimal_to_binary_rounding_policy = toward_minus_infinity; template JKJ_FORCEINLINE static auto delegate(SignedSignificandBits s, Func&& f) noexcept { if (s.is_negative()) { return f(detail::right_closed_directed{}); } else { return f(detail::left_closed_directed{}); } } }; struct toward_zero : base { using decimal_to_binary_rounding_policy = toward_zero; template JKJ_FORCEINLINE static auto delegate(SignedSignificandBits, Func&& f) noexcept { return f(detail::left_closed_directed{}); } }; struct away_from_zero : base { using decimal_to_binary_rounding_policy = away_from_zero; template JKJ_FORCEINLINE static auto delegate(SignedSignificandBits, Func&& f) noexcept { return f(detail::right_closed_directed{}); } }; } // Binary-to-decimal rounding policies. // (Always assumes nearest rounding modes.) namespace binary_to_decimal_rounding { struct base {}; enum class tag_t { do_not_care, to_even, to_odd, away_from_zero, toward_zero }; struct do_not_care : base { using binary_to_decimal_rounding_policy = do_not_care; static constexpr auto tag = tag_t::do_not_care; template static constexpr bool prefer_round_down(ReturnType const&) noexcept { return false; } }; struct to_even : base { using binary_to_decimal_rounding_policy = to_even; static constexpr auto tag = tag_t::to_even; template static constexpr bool prefer_round_down(ReturnType const& r) noexcept { return r.significand % 2 != 0; } }; struct to_odd : base { using binary_to_decimal_rounding_policy = to_odd; static constexpr auto tag = tag_t::to_odd; template static constexpr bool prefer_round_down(ReturnType const& r) noexcept { return r.significand % 2 == 0; } }; struct away_from_zero : base { using binary_to_decimal_rounding_policy = away_from_zero; static constexpr auto tag = tag_t::away_from_zero; template static constexpr bool prefer_round_down(ReturnType const&) noexcept { return false; } }; struct toward_zero : base { using binary_to_decimal_rounding_policy = toward_zero; static constexpr auto tag = tag_t::toward_zero; template static constexpr bool prefer_round_down(ReturnType const&) noexcept { return true; } }; } // Cache policies. namespace cache { struct base {}; struct full : base { using cache_policy = full; template static constexpr typename cache_holder::cache_entry_type get_cache(int k) noexcept { assert(k >= cache_holder::min_k && k <= cache_holder::max_k); return cache_holder::cache[std::size_t( k - cache_holder::min_k)]; } }; struct compact : base { using cache_policy = compact; template static constexpr typename cache_holder::cache_entry_type get_cache(int k) noexcept { assert(k >= cache_holder::min_k && k <= cache_holder::max_k); if constexpr (std::is_same_v) { // Compute the base index. auto const cache_index = int(std::uint32_t(k - cache_holder::min_k) / compressed_cache_detail::compression_ratio); auto const kb = cache_index * compressed_cache_detail::compression_ratio + cache_holder::min_k; auto const offset = k - kb; // Get the base cache. auto const base_cache = compressed_cache_detail::cache.table[cache_index]; if (offset == 0) { return base_cache; } else { // Compute the required amount of bit-shift. auto const alpha = log::floor_log2_pow10(kb + offset) - log::floor_log2_pow10(kb) - offset; assert(alpha > 0 && alpha < 64); // Try to recover the real cache. auto const pow5 = compressed_cache_detail::pow5.table[offset]; auto recovered_cache = wuint::umul128(base_cache.high(), pow5); auto const middle_low = wuint::umul128(base_cache.low(), pow5); recovered_cache += middle_low.high(); auto const high_to_middle = recovered_cache.high() << (64 - alpha); auto const middle_to_low = recovered_cache.low() << (64 - alpha); recovered_cache = wuint::uint128{ (recovered_cache.low() >> alpha) | high_to_middle, ((middle_low.low() >> alpha) | middle_to_low)}; assert(recovered_cache.low() + 1 != 0); recovered_cache = {recovered_cache.high(), recovered_cache.low() + 1}; return recovered_cache; } } else { // Just use the full cache for anything other than binary64 return cache_holder::cache[std::size_t( k - cache_holder::min_k)]; } } }; } } } namespace policy { namespace sign { inline constexpr auto ignore = detail::policy_impl::sign::ignore{}; inline constexpr auto return_sign = detail::policy_impl::sign::return_sign{}; } namespace trailing_zero { inline constexpr auto ignore = detail::policy_impl::trailing_zero::ignore{}; inline constexpr auto remove = detail::policy_impl::trailing_zero::remove{}; inline constexpr auto report = detail::policy_impl::trailing_zero::report{}; } namespace decimal_to_binary_rounding { inline constexpr auto nearest_to_even = detail::policy_impl::decimal_to_binary_rounding::nearest_to_even{}; inline constexpr auto nearest_to_odd = detail::policy_impl::decimal_to_binary_rounding::nearest_to_odd{}; inline constexpr auto nearest_toward_plus_infinity = detail::policy_impl::decimal_to_binary_rounding::nearest_toward_plus_infinity{}; inline constexpr auto nearest_toward_minus_infinity = detail::policy_impl::decimal_to_binary_rounding::nearest_toward_minus_infinity{}; inline constexpr auto nearest_toward_zero = detail::policy_impl::decimal_to_binary_rounding::nearest_toward_zero{}; inline constexpr auto nearest_away_from_zero = detail::policy_impl::decimal_to_binary_rounding::nearest_away_from_zero{}; inline constexpr auto nearest_to_even_static_boundary = detail::policy_impl::decimal_to_binary_rounding::nearest_to_even_static_boundary{}; inline constexpr auto nearest_to_odd_static_boundary = detail::policy_impl::decimal_to_binary_rounding::nearest_to_odd_static_boundary{}; inline constexpr auto nearest_toward_plus_infinity_static_boundary = detail::policy_impl::decimal_to_binary_rounding:: nearest_toward_plus_infinity_static_boundary{}; inline constexpr auto nearest_toward_minus_infinity_static_boundary = detail::policy_impl::decimal_to_binary_rounding:: nearest_toward_minus_infinity_static_boundary{}; inline constexpr auto toward_plus_infinity = detail::policy_impl::decimal_to_binary_rounding::toward_plus_infinity{}; inline constexpr auto toward_minus_infinity = detail::policy_impl::decimal_to_binary_rounding::toward_minus_infinity{}; inline constexpr auto toward_zero = detail::policy_impl::decimal_to_binary_rounding::toward_zero{}; inline constexpr auto away_from_zero = detail::policy_impl::decimal_to_binary_rounding::away_from_zero{}; } namespace binary_to_decimal_rounding { inline constexpr auto do_not_care = detail::policy_impl::binary_to_decimal_rounding::do_not_care{}; inline constexpr auto to_even = detail::policy_impl::binary_to_decimal_rounding::to_even{}; inline constexpr auto to_odd = detail::policy_impl::binary_to_decimal_rounding::to_odd{}; inline constexpr auto away_from_zero = detail::policy_impl::binary_to_decimal_rounding::away_from_zero{}; inline constexpr auto toward_zero = detail::policy_impl::binary_to_decimal_rounding::toward_zero{}; } namespace cache { inline constexpr auto full = detail::policy_impl::cache::full{}; inline constexpr auto compact = detail::policy_impl::cache::compact{}; } } namespace detail { //////////////////////////////////////////////////////////////////////////////////////// // The main algorithm. //////////////////////////////////////////////////////////////////////////////////////// template struct impl : private FloatTraits, private FloatTraits::format { using format = typename FloatTraits::format; using carrier_uint = typename FloatTraits::carrier_uint; using FloatTraits::carrier_bits; using format::significand_bits; using format::min_exponent; using format::max_exponent; using format::exponent_bias; using format::decimal_digits; static constexpr int kappa = std::is_same_v ? 1 : 2; static_assert(kappa >= 1); static_assert(carrier_bits >= significand_bits + 2 + log::floor_log2_pow10(kappa + 1)); static constexpr int min_k = [] { constexpr auto a = -log::floor_log10_pow2_minus_log10_4_over_3( int(max_exponent - significand_bits)); constexpr auto b = -log::floor_log10_pow2(int(max_exponent - significand_bits)) + kappa; return a < b ? a : b; }(); static_assert(min_k >= cache_holder::min_k); static constexpr int max_k = [] { // We do invoke shorter_interval_case for exponent == min_exponent case, // so we should not add 1 here. constexpr auto a = -log::floor_log10_pow2_minus_log10_4_over_3( int(min_exponent - significand_bits /*+ 1*/)); constexpr auto b = -log::floor_log10_pow2(int(min_exponent - significand_bits)) + kappa; return a > b ? a : b; }(); static_assert(max_k <= cache_holder::max_k); using cache_entry_type = typename cache_holder::cache_entry_type; static constexpr auto cache_bits = cache_holder::cache_bits; static constexpr int case_shorter_interval_left_endpoint_lower_threshold = 2; static constexpr int case_shorter_interval_left_endpoint_upper_threshold = 2 + log::floor_log2( compute_power< count_factors<5>((carrier_uint(1) << (significand_bits + 2)) - 1) + 1>(10) / 3); static constexpr int case_shorter_interval_right_endpoint_lower_threshold = 0; static constexpr int case_shorter_interval_right_endpoint_upper_threshold = 2 + log::floor_log2( compute_power< count_factors<5>((carrier_uint(1) << (significand_bits + 1)) + 1) + 1>(10) / 3); static constexpr int shorter_interval_tie_lower_threshold = -log::floor_log5_pow2_minus_log5_3(significand_bits + 4) - 2 - significand_bits; static constexpr int shorter_interval_tie_upper_threshold = -log::floor_log5_pow2(significand_bits + 2) - 2 - significand_bits; struct compute_mul_result { carrier_uint result; bool is_integer; }; struct compute_mul_parity_result { bool parity; bool is_integer; }; //// The main algorithm assumes the input is a normal/subnormal finite number template JKJ_SAFEBUFFERS static ReturnType compute_nearest_normal(carrier_uint const two_fc, int const exponent, AdditionalArgs... additional_args) noexcept { ////////////////////////////////////////////////////////////////////// // Step 1: Schubfach multiplier calculation ////////////////////////////////////////////////////////////////////// ReturnType ret_value; IntervalType interval_type{additional_args...}; // Compute k and beta. int const minus_k = log::floor_log10_pow2(exponent) - kappa; auto const cache = CachePolicy::template get_cache(-minus_k); int const beta = exponent + log::floor_log2_pow10(-minus_k); // Compute zi and deltai. // 10^kappa <= deltai < 10^(kappa + 1) auto const deltai = compute_delta(cache, beta); // For the case of binary32, the result of integer check is not correct for // 29711844 * 2^-82 // = 6.1442653300000000008655037797566933477355632930994033813476... * 10^-18 // and 29711844 * 2^-81 // = 1.2288530660000000001731007559513386695471126586198806762695... * 10^-17, // and they are the unique counterexamples. However, since 29711844 is even, // this does not cause any problem for the endpoints calculations; it can only // cause a problem when we need to perform integer check for the center. // Fortunately, with these inputs, that branch is never executed, so we are fine. auto const [zi, is_z_integer] = compute_mul((two_fc | 1) << beta, cache); ////////////////////////////////////////////////////////////////////// // Step 2: Try larger divisor; remove trailing zeros if necessary ////////////////////////////////////////////////////////////////////// constexpr auto big_divisor = compute_power(std::uint32_t(10)); constexpr auto small_divisor = compute_power(std::uint32_t(10)); // Using an upper bound on zi, we might be able to optimize the division // better than the compiler; we are computing zi / big_divisor here. ret_value.significand = div::divide_by_pow10(zi); auto r = std::uint32_t(zi - big_divisor * ret_value.significand); if (r < deltai) { // Exclude the right endpoint if necessary. if (r == 0 && (is_z_integer & !interval_type.include_right_endpoint())) { if constexpr (BinaryToDecimalRoundingPolicy::tag == policy_impl::binary_to_decimal_rounding::tag_t::do_not_care) { ret_value.significand *= 10; ret_value.exponent = minus_k + kappa; --ret_value.significand; TrailingZeroPolicy::template no_trailing_zeros(ret_value); return ret_value; } else { --ret_value.significand; r = big_divisor; goto small_divisor_case_label; } } } else if (r > deltai) { goto small_divisor_case_label; } else { // r == deltai; compare fractional parts. auto const [xi_parity, x_is_integer] = compute_mul_parity(two_fc - 1, cache, beta); if (!(xi_parity | (x_is_integer & interval_type.include_left_endpoint()))) { goto small_divisor_case_label; } } ret_value.exponent = minus_k + kappa + 1; // We may need to remove trailing zeros. TrailingZeroPolicy::template on_trailing_zeros(ret_value); return ret_value; ////////////////////////////////////////////////////////////////////// // Step 3: Find the significand with the smaller divisor ////////////////////////////////////////////////////////////////////// small_divisor_case_label: TrailingZeroPolicy::template no_trailing_zeros(ret_value); ret_value.significand *= 10; ret_value.exponent = minus_k + kappa; if constexpr (BinaryToDecimalRoundingPolicy::tag == policy_impl::binary_to_decimal_rounding::tag_t::do_not_care) { // Normally, we want to compute // ret_value.significand += r / small_divisor // and return, but we need to take care of the case that the resulting // value is exactly the right endpoint, while that is not included in the // interval. if (!interval_type.include_right_endpoint()) { // Is r divisible by 10^kappa? if (is_z_integer && div::check_divisibility_and_divide_by_pow10(r)) { // This should be in the interval. ret_value.significand += r - 1; } else { ret_value.significand += r; } } else { ret_value.significand += div::small_division_by_pow10(r); } } else { auto dist = r - (deltai / 2) + (small_divisor / 2); bool const approx_y_parity = ((dist ^ (small_divisor / 2)) & 1) != 0; // Is dist divisible by 10^kappa? bool const divisible_by_small_divisor = div::check_divisibility_and_divide_by_pow10(dist); // Add dist / 10^kappa to the significand. ret_value.significand += dist; if (divisible_by_small_divisor) { // Check z^(f) >= epsilon^(f). // We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1, // where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f). // Since there are only 2 possibilities, we only need to care about the // parity. Also, zi and r should have the same parity since the divisor is // an even number. auto const [yi_parity, is_y_integer] = compute_mul_parity(two_fc, cache, beta); if (yi_parity != approx_y_parity) { --ret_value.significand; } else { // If z^(f) >= epsilon^(f), we might have a tie // when z^(f) == epsilon^(f), or equivalently, when y is an integer. // For tie-to-up case, we can just choose the upper one. if (BinaryToDecimalRoundingPolicy::prefer_round_down(ret_value) & is_y_integer) { --ret_value.significand; } } } } return ret_value; } template JKJ_SAFEBUFFERS static ReturnType compute_nearest_shorter(int const exponent, AdditionalArgs... additional_args) noexcept { ReturnType ret_value; IntervalType interval_type{additional_args...}; // Compute k and beta. int const minus_k = log::floor_log10_pow2_minus_log10_4_over_3(exponent); int const beta = exponent + log::floor_log2_pow10(-minus_k); // Compute xi and zi. auto const cache = CachePolicy::template get_cache(-minus_k); auto xi = compute_left_endpoint_for_shorter_interval_case(cache, beta); auto zi = compute_right_endpoint_for_shorter_interval_case(cache, beta); // If we don't accept the right endpoint and // if the right endpoint is an integer, decrease it. if (!interval_type.include_right_endpoint() && is_right_endpoint_integer_shorter_interval(exponent)) { --zi; } // If we don't accept the left endpoint or // if the left endpoint is not an integer, increase it. if (!interval_type.include_left_endpoint() || !is_left_endpoint_integer_shorter_interval(exponent)) { ++xi; } // Try bigger divisor. ret_value.significand = zi / 10; // If succeed, remove trailing zeros if necessary and return. if (ret_value.significand * 10 >= xi) { ret_value.exponent = minus_k + 1; TrailingZeroPolicy::template on_trailing_zeros(ret_value); return ret_value; } // Otherwise, compute the round-up of y. TrailingZeroPolicy::template no_trailing_zeros(ret_value); ret_value.significand = compute_round_up_for_shorter_interval_case(cache, beta); ret_value.exponent = minus_k; // When tie occurs, choose one of them according to the rule. if (BinaryToDecimalRoundingPolicy::prefer_round_down(ret_value) && exponent >= shorter_interval_tie_lower_threshold && exponent <= shorter_interval_tie_upper_threshold) { --ret_value.significand; } else if (ret_value.significand < xi) { ++ret_value.significand; } return ret_value; } template JKJ_SAFEBUFFERS static ReturnType compute_left_closed_directed(carrier_uint const two_fc, int exponent) noexcept { ////////////////////////////////////////////////////////////////////// // Step 1: Schubfach multiplier calculation ////////////////////////////////////////////////////////////////////// ReturnType ret_value; // Compute k and beta. int const minus_k = log::floor_log10_pow2(exponent) - kappa; auto const cache = CachePolicy::template get_cache(-minus_k); int const beta = exponent + log::floor_log2_pow10(-minus_k); // Compute xi and deltai. // 10^kappa <= deltai < 10^(kappa + 1) auto const deltai = compute_delta(cache, beta); auto [xi, is_x_integer] = compute_mul(two_fc << beta, cache); // Deal with the unique exceptional cases // 29711844 * 2^-82 // = 6.1442653300000000008655037797566933477355632930994033813476... * 10^-18 // and 29711844 * 2^-81 // = 1.2288530660000000001731007559513386695471126586198806762695... * 10^-17 // for binary32. if constexpr (std::is_same_v) { if (exponent <= -80) { is_x_integer = false; } } if (!is_x_integer) { ++xi; } ////////////////////////////////////////////////////////////////////// // Step 2: Try larger divisor; remove trailing zeros if necessary ////////////////////////////////////////////////////////////////////// constexpr auto big_divisor = compute_power(std::uint32_t(10)); // Using an upper bound on xi, we might be able to optimize the division // better than the compiler; we are computing xi / big_divisor here. ret_value.significand = div::divide_by_pow10(xi); auto r = std::uint32_t(xi - big_divisor * ret_value.significand); if (r != 0) { ++ret_value.significand; r = big_divisor - r; } if (r > deltai) { goto small_divisor_case_label; } else if (r == deltai) { // Compare the fractional parts. // This branch is never taken for the exceptional cases // 2f_c = 29711482, e = -81 // (6.1442649164096937243516663440523473127541365101933479309082... * 10^-18) // and 2f_c = 29711482, e = -80 // (1.2288529832819387448703332688104694625508273020386695861816... * 10^-17). auto const [zi_parity, is_z_integer] = compute_mul_parity(two_fc + 2, cache, beta); if (zi_parity || is_z_integer) { goto small_divisor_case_label; } } // The ceiling is inside, so we are done. ret_value.exponent = minus_k + kappa + 1; TrailingZeroPolicy::template on_trailing_zeros(ret_value); return ret_value; ////////////////////////////////////////////////////////////////////// // Step 3: Find the significand with the smaller divisor ////////////////////////////////////////////////////////////////////// small_divisor_case_label: ret_value.significand *= 10; ret_value.significand -= div::small_division_by_pow10(r); ret_value.exponent = minus_k + kappa; TrailingZeroPolicy::template no_trailing_zeros(ret_value); return ret_value; } template JKJ_SAFEBUFFERS static ReturnType compute_right_closed_directed(carrier_uint const two_fc, int const exponent, bool shorter_interval) noexcept { ////////////////////////////////////////////////////////////////////// // Step 1: Schubfach multiplier calculation ////////////////////////////////////////////////////////////////////// ReturnType ret_value; // Compute k and beta. int const minus_k = log::floor_log10_pow2(exponent - (shorter_interval ? 1 : 0)) - kappa; auto const cache = CachePolicy::template get_cache(-minus_k); int const beta = exponent + log::floor_log2_pow10(-minus_k); // Compute zi and deltai. // 10^kappa <= deltai < 10^(kappa + 1) auto const deltai = shorter_interval ? compute_delta(cache, beta - 1) : compute_delta(cache, beta); carrier_uint const zi = compute_mul(two_fc << beta, cache).result; ////////////////////////////////////////////////////////////////////// // Step 2: Try larger divisor; remove trailing zeros if necessary ////////////////////////////////////////////////////////////////////// constexpr auto big_divisor = compute_power(std::uint32_t(10)); // Using an upper bound on zi, we might be able to optimize the division better than // the compiler; we are computing zi / big_divisor here. ret_value.significand = div::divide_by_pow10(zi); auto const r = std::uint32_t(zi - big_divisor * ret_value.significand); if (r > deltai) { goto small_divisor_case_label; } else if (r == deltai) { // Compare the fractional parts. if (!compute_mul_parity(two_fc - (shorter_interval ? 1 : 2), cache, beta) .parity) { goto small_divisor_case_label; } } // The floor is inside, so we are done. ret_value.exponent = minus_k + kappa + 1; TrailingZeroPolicy::template on_trailing_zeros(ret_value); return ret_value; ////////////////////////////////////////////////////////////////////// // Step 3: Find the significand with the small divisor ////////////////////////////////////////////////////////////////////// small_divisor_case_label: ret_value.significand *= 10; ret_value.significand += div::small_division_by_pow10(r); ret_value.exponent = minus_k + kappa; TrailingZeroPolicy::template no_trailing_zeros(ret_value); return ret_value; } // Remove trailing zeros from n and return the number of zeros removed. JKJ_FORCEINLINE static int remove_trailing_zeros(carrier_uint& n) noexcept { assert(n != 0); if constexpr (std::is_same_v) { constexpr auto mod_inv_5 = std::uint32_t(0xcccc'cccd); constexpr auto mod_inv_25 = mod_inv_5 * mod_inv_5; int s = 0; while (true) { auto q = bits::rotr(n * mod_inv_25, 2); if (q <= std::numeric_limits::max() / 100) { n = q; s += 2; } else { break; } } auto q = bits::rotr(n * mod_inv_5, 1); if (q <= std::numeric_limits::max() / 10) { n = q; s |= 1; } return s; } else { static_assert(std::is_same_v); // Divide by 10^8 and reduce to 32-bits if divisible. // Since ret_value.significand <= (2^53 * 1000 - 1) / 1000 < 10^16, // n is at most of 16 digits. // This magic number is ceil(2^90 / 10^8). constexpr auto magic_number = std::uint64_t(12379400392853802749ull); auto nm = wuint::umul128(n, magic_number); // Is n is divisible by 10^8? if ((nm.high() & ((std::uint64_t(1) << (90 - 64)) - 1)) == 0 && nm.low() < magic_number) { // If yes, work with the quotient. auto n32 = std::uint32_t(nm.high() >> (90 - 64)); constexpr auto mod_inv_5 = std::uint32_t(0xcccc'cccd); constexpr auto mod_inv_25 = mod_inv_5 * mod_inv_5; int s = 8; while (true) { auto q = bits::rotr(n32 * mod_inv_25, 2); if (q <= std::numeric_limits::max() / 100) { n32 = q; s += 2; } else { break; } } auto q = bits::rotr(n32 * mod_inv_5, 1); if (q <= std::numeric_limits::max() / 10) { n32 = q; s |= 1; } n = n32; return s; } // If n is not divisible by 10^8, work with n itself. constexpr auto mod_inv_5 = std::uint64_t(0xcccc'cccc'cccc'cccd); constexpr auto mod_inv_25 = mod_inv_5 * mod_inv_5; int s = 0; while (true) { auto q = bits::rotr(n * mod_inv_25, 2); if (q <= std::numeric_limits::max() / 100) { n = q; s += 2; } else { break; } } auto q = bits::rotr(n * mod_inv_5, 1); if (q <= std::numeric_limits::max() / 10) { n = q; s |= 1; } return s; } } static compute_mul_result compute_mul(carrier_uint u, cache_entry_type const& cache) noexcept { if constexpr (std::is_same_v) { auto r = wuint::umul96_upper64(u, cache); return {carrier_uint(r >> 32), carrier_uint(r) == 0}; } else { static_assert(std::is_same_v); auto r = wuint::umul192_upper128(u, cache); return {r.high(), r.low() == 0}; } } static constexpr std::uint32_t compute_delta(cache_entry_type const& cache, int beta) noexcept { if constexpr (std::is_same_v) { return std::uint32_t(cache >> (cache_bits - 1 - beta)); } else { static_assert(std::is_same_v); return std::uint32_t(cache.high() >> (carrier_bits - 1 - beta)); } } static compute_mul_parity_result compute_mul_parity(carrier_uint two_f, cache_entry_type const& cache, int beta) noexcept { assert(beta >= 1); assert(beta < 64); if constexpr (std::is_same_v) { auto r = wuint::umul96_lower64(two_f, cache); return {((r >> (64 - beta)) & 1) != 0, std::uint32_t(r >> (32 - beta)) == 0}; } else { static_assert(std::is_same_v); auto r = wuint::umul192_lower128(two_f, cache); return {((r.high() >> (64 - beta)) & 1) != 0, ((r.high() << beta) | (r.low() >> (64 - beta))) == 0}; } } static constexpr carrier_uint compute_left_endpoint_for_shorter_interval_case(cache_entry_type const& cache, int beta) noexcept { if constexpr (std::is_same_v) { return carrier_uint((cache - (cache >> (significand_bits + 2))) >> (cache_bits - significand_bits - 1 - beta)); } else { static_assert(std::is_same_v); return (cache.high() - (cache.high() >> (significand_bits + 2))) >> (carrier_bits - significand_bits - 1 - beta); } } static constexpr carrier_uint compute_right_endpoint_for_shorter_interval_case(cache_entry_type const& cache, int beta) noexcept { if constexpr (std::is_same_v) { return carrier_uint((cache + (cache >> (significand_bits + 1))) >> (cache_bits - significand_bits - 1 - beta)); } else { static_assert(std::is_same_v); return (cache.high() + (cache.high() >> (significand_bits + 1))) >> (carrier_bits - significand_bits - 1 - beta); } } static constexpr carrier_uint compute_round_up_for_shorter_interval_case(cache_entry_type const& cache, int beta) noexcept { if constexpr (std::is_same_v) { return (carrier_uint(cache >> (cache_bits - significand_bits - 2 - beta)) + 1) / 2; } else { static_assert(std::is_same_v); return ((cache.high() >> (carrier_bits - significand_bits - 2 - beta)) + 1) / 2; } } static constexpr bool is_right_endpoint_integer_shorter_interval(int exponent) noexcept { return exponent >= case_shorter_interval_right_endpoint_lower_threshold && exponent <= case_shorter_interval_right_endpoint_upper_threshold; } static constexpr bool is_left_endpoint_integer_shorter_interval(int exponent) noexcept { return exponent >= case_shorter_interval_left_endpoint_lower_threshold && exponent <= case_shorter_interval_left_endpoint_upper_threshold; } }; //////////////////////////////////////////////////////////////////////////////////////// // Policy holder. //////////////////////////////////////////////////////////////////////////////////////// namespace policy_impl { // The library will specify a list of accepted kinds of policies and their defaults, and // the user will pass a list of policies. The aim of helper classes/functions here is to // do the following: // 1. Check if the policy parameters given by the user are all valid; that means, // each of them should be of the kinds specified by the library. // If that's not the case, then the compilation fails. // 2. Check if multiple policy parameters for the same kind is specified by the user. // If that's the case, then the compilation fails. // 3. Build a class deriving from all policies the user have given, and also from // the default policies if the user did not specify one for some kinds. // A policy belongs to a certain kind if it is deriving from a base class. // For a given kind, find a policy belonging to that kind. // Check if there are more than one such policies. enum class policy_found_info { not_found, unique, repeated }; template struct found_policy_pair { using policy = Policy; static constexpr auto found_info = info; }; template struct base_default_pair { using base = Base; template static constexpr FoundPolicyInfo get_policy_impl(FoundPolicyInfo) { return {}; } template static constexpr auto get_policy_impl(FoundPolicyInfo, FirstPolicy, RemainingPolicies... remainings) { if constexpr (std::is_base_of_v) { if constexpr (FoundPolicyInfo::found_info == policy_found_info::not_found) { return get_policy_impl( found_policy_pair{}, remainings...); } else { return get_policy_impl( found_policy_pair{}, remainings...); } } else { return get_policy_impl(FoundPolicyInfo{}, remainings...); } } template static constexpr auto get_policy(Policies... policies) { return get_policy_impl( found_policy_pair{}, policies...); } }; template struct base_default_pair_list {}; // Check if a given policy belongs to one of the kinds specified by the library. template constexpr bool check_policy_validity(Policy, base_default_pair_list<>) { return false; } template constexpr bool check_policy_validity( Policy, base_default_pair_list) { return std::is_base_of_v || check_policy_validity( Policy{}, base_default_pair_list{}); } template constexpr bool check_policy_list_validity(BaseDefaultPairList) { return true; } template constexpr bool check_policy_list_validity(BaseDefaultPairList, FirstPolicy, RemainingPolicies... remaining_policies) { return check_policy_validity(FirstPolicy{}, BaseDefaultPairList{}) && check_policy_list_validity(BaseDefaultPairList{}, remaining_policies...); } // Build policy_holder. template struct found_policy_pair_list { static constexpr bool repeated = repeated_; }; template struct policy_holder : Policies... {}; template constexpr auto make_policy_holder_impl(base_default_pair_list<>, found_policy_pair_list, Policies...) { return found_policy_pair_list{}; } template constexpr auto make_policy_holder_impl( base_default_pair_list, found_policy_pair_list, Policies... policies) { using new_found_policy_pair = decltype(FirstBaseDefaultPair::get_policy(policies...)); return make_policy_holder_impl( base_default_pair_list{}, found_policy_pair_list < repeated || new_found_policy_pair::found_info == policy_found_info::repeated, new_found_policy_pair, FoundPolicyPairs... > {}, policies...); } template constexpr auto convert_to_policy_holder(found_policy_pair_list, RawPolicies...) { return policy_holder{}; } template constexpr auto convert_to_policy_holder(found_policy_pair_list, RawPolicies... policies) { return convert_to_policy_holder( found_policy_pair_list{}, typename FirstFoundPolicyPair::policy{}, policies...); } template constexpr auto make_policy_holder(BaseDefaultPairList, Policies... policies) { static_assert(check_policy_list_validity(BaseDefaultPairList{}, Policies{}...), "jkj::dragonbox: an invalid policy is specified"); using policy_pair_list = decltype(make_policy_holder_impl( BaseDefaultPairList{}, found_policy_pair_list{}, policies...)); static_assert(!policy_pair_list::repeated, "jkj::dragonbox: each policy should be specified at most once"); return convert_to_policy_holder(policy_pair_list{}); } } } //////////////////////////////////////////////////////////////////////////////////////// // The interface function. //////////////////////////////////////////////////////////////////////////////////////// template , class... Policies> JKJ_FORCEINLINE JKJ_SAFEBUFFERS auto to_decimal(signed_significand_bits signed_significand_bits, unsigned int exponent_bits, Policies... policies) noexcept { // Build policy holder type. using namespace detail::policy_impl; using policy_holder = decltype(make_policy_holder( base_default_pair_list, base_default_pair, base_default_pair, base_default_pair, base_default_pair>{}, policies...)); using return_type = decimal_fp; return_type ret = policy_holder::delegate( signed_significand_bits, [exponent_bits, signed_significand_bits](auto interval_type_provider) { using format = typename FloatTraits::format; constexpr auto tag = decltype(interval_type_provider)::tag; auto two_fc = signed_significand_bits.remove_sign_bit_and_shift(); auto exponent = int(exponent_bits); if constexpr (tag == decimal_to_binary_rounding::tag_t::to_nearest) { // Is the input a normal number? if (exponent != 0) { exponent += format::exponent_bias - format::significand_bits; // Shorter interval case; proceed like Schubfach. // One might think this condition is wrong, since when exponent_bits == 1 // and two_fc == 0, the interval is actually regular. However, it turns out // that this seemingly wrong condition is actually fine, because the end // result is anyway the same. // // [binary32] // (fc-1/2) * 2^e = 1.175'494'28... * 10^-38 // (fc-1/4) * 2^e = 1.175'494'31... * 10^-38 // fc * 2^e = 1.175'494'35... * 10^-38 // (fc+1/2) * 2^e = 1.175'494'42... * 10^-38 // // Hence, shorter_interval_case will return 1.175'494'4 * 10^-38. // 1.175'494'3 * 10^-38 is also a correct shortest representation that will // be rejected if we assume shorter interval, but 1.175'494'4 * 10^-38 is // closer to the true value so it doesn't matter. // // [binary64] // (fc-1/2) * 2^e = 2.225'073'858'507'201'13... * 10^-308 // (fc-1/4) * 2^e = 2.225'073'858'507'201'25... * 10^-308 // fc * 2^e = 2.225'073'858'507'201'38... * 10^-308 // (fc+1/2) * 2^e = 2.225'073'858'507'201'63... * 10^-308 // // Hence, shorter_interval_case will return 2.225'073'858'507'201'4 * // 10^-308. This is indeed of the shortest length, and it is the unique one // closest to the true value among valid representations of the same length. static_assert(std::is_same_v || std::is_same_v); if (two_fc == 0) { return decltype(interval_type_provider)::invoke_shorter_interval_case( signed_significand_bits, [exponent](auto... additional_args) { return detail::impl:: template compute_nearest_shorter< return_type, typename decltype(interval_type_provider):: shorter_interval_type, typename policy_holder::trailing_zero_policy, typename policy_holder:: binary_to_decimal_rounding_policy, typename policy_holder::cache_policy>( exponent, additional_args...); }); } two_fc |= (decltype(two_fc)(1) << (format::significand_bits + 1)); } // Is the input a subnormal number? else { exponent = format::min_exponent - format::significand_bits; } return decltype(interval_type_provider)::invoke_normal_interval_case( signed_significand_bits, [two_fc, exponent](auto... additional_args) { return detail::impl:: template compute_nearest_normal< return_type, typename decltype(interval_type_provider)::normal_interval_type, typename policy_holder::trailing_zero_policy, typename policy_holder::binary_to_decimal_rounding_policy, typename policy_holder::cache_policy>(two_fc, exponent, additional_args...); }); } else if constexpr (tag == decimal_to_binary_rounding::tag_t::left_closed_directed) { // Is the input a normal number? if (exponent != 0) { exponent += format::exponent_bias - format::significand_bits; two_fc |= (decltype(two_fc)(1) << (format::significand_bits + 1)); } // Is the input a subnormal number? else { exponent = format::min_exponent - format::significand_bits; } return detail::impl::template compute_left_closed_directed< return_type, typename policy_holder::trailing_zero_policy, typename policy_holder::cache_policy>(two_fc, exponent); } else { static_assert(tag == decimal_to_binary_rounding::tag_t::right_closed_directed); bool shorter_interval = false; // Is the input a normal number? if (exponent != 0) { if (two_fc == 0 && exponent != 1) { shorter_interval = true; } exponent += format::exponent_bias - format::significand_bits; two_fc |= (decltype(two_fc)(1) << (format::significand_bits + 1)); } // Is the input a subnormal number? else { exponent = format::min_exponent - format::significand_bits; } return detail::impl::template compute_right_closed_directed< return_type, typename policy_holder::trailing_zero_policy, typename policy_holder::cache_policy>(two_fc, exponent, shorter_interval); } }); policy_holder::handle_sign(signed_significand_bits, ret); return ret; } template , class... Policies> JKJ_FORCEINLINE JKJ_SAFEBUFFERS auto to_decimal(Float x, Policies... policies) noexcept { auto const br = float_bits(x); auto const exponent_bits = br.extract_exponent_bits(); auto const s = br.remove_exponent_bits(exponent_bits); assert(br.is_finite()); return to_decimal(s, exponent_bits, policies...); } } #undef JKJ_FORCEINLINE #undef JKJ_SAFEBUFFERS #undef JKJ_DRAGONBOX_HAS_BUILTIN #endif