You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
AQuery/engine/expr.py

135 lines
5.0 KiB

from engine.ast import ast_node, ColRef
start_expr = 'f"'
index_expr = '{\'\' if x is None and y is None else f\'[{x}]\'}'
end_expr = '"'
class expr(ast_node):
name='expr'
builtin_func_maps = {
'max': 'max',
'min': 'min',
'avg': 'avg',
'sum': 'sum',
'count' : 'count',
'mins': ['mins', 'minw'],
'maxs': ['maxs', 'maxw'],
'avgs': ['avgs', 'avgw'],
'sums': ['sums', 'sumw'],
}
binary_ops = {
'sub':'-',
'add':'+',
'mul':'*',
'div':'/',
'mod':'%',
'and':'&&',
'or':'||',
'xor' : '^',
'gt':'>',
'lt':'<',
'lte':'<=',
'gte':'>=',
'neq':'!=',
'eq':'=='
}
compound_ops = {
'missing' : ['missing', lambda x: f'{x[0]} == nullval<decays<decltype({x[0]})>>'],
}
unary_ops = {
'neg' : '-',
'not' : '!'
}
coumpound_generating_ops = ['avgs', 'mins', 'maxs', 'sums'] + \
list( binary_ops.keys()) + list(compound_ops.keys()) + list(unary_ops.keys() )
def __init__(self, parent, node, materialize_cols = True, abs_col = False):
self.materialize_cols = materialize_cols
self.raw_col = None
self.__abs = abs_col
self.inside_agg = False
if(type(parent) is expr):
self.inside_agg = parent.inside_agg
self.__abs = parent.__abs
ast_node.__init__(self, parent, node, None)
def init(self, _):
from engine.projection import projection
parent = self.parent
self.isvector = parent.isvector if type(parent) is expr else False
self.is_compound = parent.is_compound if type(parent) is expr else False
if type(parent) in [projection, expr]:
self.datasource = parent.datasource
else:
self.datasource = self.context.datasource
self.udf_map = parent.context.udf_map
self._expr = ''
self.cexpr = None
self.func_maps = {**self.udf_map, **self.builtin_func_maps}
def produce(self, node):
if type(node) is dict:
for key, val in node.items():
if key in self.func_maps:
# TODO: distinguish between UDF agg functions and other UDF functions.
self.inside_agg = True
self.context.headers.add('"./server/aggregations.h"')
if type(val) is list and len(val) > 1:
cfunc = self.func_maps[key]
cfunc = cfunc[len(val) - 1] if type(cfunc) is list else cfunc
self._expr += f"{cfunc}("
for i, p in enumerate(val):
self._expr += expr(self, p)._expr + (','if i<len(val)-1 else '')
else:
funcname = self.func_maps[key]
funcname = funcname[0] if type(funcname) is list else funcname
self._expr += f"{funcname}("
self._expr += expr(self, val)._expr
self._expr += ')'
self.inside_agg = False
elif key in self.binary_ops:
l = expr(self, val[0])._expr
r = expr(self, val[1])._expr
self._expr += f'({l}{self.binary_ops[key]}{r})'
elif key in self.compound_ops:
x = []
if type(val) is list:
for v in val:
x.append(expr(self, v)._expr)
self._expr = self.compound_ops[key][1](x)
elif key in self.unary_ops:
self._expr += f'{self.unary_ops[key]}({expr(self, val)._expr})'
else:
self.context.Error(f'Undefined expr: {key}{val}')
if key in self.coumpound_generating_ops and not self.is_compound:
self.is_compound = True
p = self.parent
while type(p) is expr and not p.is_compound:
p.is_compound = True
p = p.parent
elif type(node) is str:
p = self.parent
while type(p) is expr and not p.isvector:
p.isvector = True
p = p.parent
self._expr, self.raw_col = self.datasource.parse_col_names(node, self.materialize_cols, True)
self.raw_col = self.raw_col if type(self.raw_col) is ColRef else None
if self.__abs and self.raw_col:
self._expr = self.raw_col.reference() + ("" if self.inside_agg else index_expr)
elif type(node) is bool:
self._expr = '1' if node else '0'
else:
self._expr = f'{node}'
def toCExpr(_expr):
return lambda x = None, y = None : eval(start_expr + _expr + end_expr)
def consume(self, _):
self.cexpr = expr.toCExpr(self._expr)
def __str__(self):
return self.cexpr