You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
135 lines
5.0 KiB
135 lines
5.0 KiB
from engine.ast import ast_node, ColRef
|
|
start_expr = 'f"'
|
|
index_expr = '{\'\' if x is None and y is None else f\'[{x}]\'}'
|
|
end_expr = '"'
|
|
|
|
class expr(ast_node):
|
|
name='expr'
|
|
builtin_func_maps = {
|
|
'max': 'max',
|
|
'min': 'min',
|
|
'avg': 'avg',
|
|
'sum': 'sum',
|
|
'count' : 'count',
|
|
'mins': ['mins', 'minw'],
|
|
'maxs': ['maxs', 'maxw'],
|
|
'avgs': ['avgs', 'avgw'],
|
|
'sums': ['sums', 'sumw'],
|
|
}
|
|
|
|
binary_ops = {
|
|
'sub':'-',
|
|
'add':'+',
|
|
'mul':'*',
|
|
'div':'/',
|
|
'mod':'%',
|
|
'and':'&&',
|
|
'or':'||',
|
|
'xor' : '^',
|
|
'gt':'>',
|
|
'lt':'<',
|
|
'lte':'<=',
|
|
'gte':'>=',
|
|
'neq':'!=',
|
|
'eq':'=='
|
|
}
|
|
|
|
compound_ops = {
|
|
'missing' : ['missing', lambda x: f'{x[0]} == nullval<decays<decltype({x[0]})>>'],
|
|
}
|
|
|
|
unary_ops = {
|
|
'neg' : '-',
|
|
'not' : '!'
|
|
}
|
|
|
|
coumpound_generating_ops = ['avgs', 'mins', 'maxs', 'sums'] + \
|
|
list( binary_ops.keys()) + list(compound_ops.keys()) + list(unary_ops.keys() )
|
|
|
|
def __init__(self, parent, node, materialize_cols = True, abs_col = False):
|
|
self.materialize_cols = materialize_cols
|
|
self.raw_col = None
|
|
self.__abs = abs_col
|
|
self.inside_agg = False
|
|
if(type(parent) is expr):
|
|
self.inside_agg = parent.inside_agg
|
|
self.__abs = parent.__abs
|
|
ast_node.__init__(self, parent, node, None)
|
|
|
|
def init(self, _):
|
|
from engine.projection import projection
|
|
parent = self.parent
|
|
self.isvector = parent.isvector if type(parent) is expr else False
|
|
self.is_compound = parent.is_compound if type(parent) is expr else False
|
|
if type(parent) in [projection, expr]:
|
|
self.datasource = parent.datasource
|
|
else:
|
|
self.datasource = self.context.datasource
|
|
self.udf_map = parent.context.udf_map
|
|
self._expr = ''
|
|
self.cexpr = None
|
|
self.func_maps = {**self.udf_map, **self.builtin_func_maps}
|
|
|
|
def produce(self, node):
|
|
if type(node) is dict:
|
|
for key, val in node.items():
|
|
if key in self.func_maps:
|
|
# TODO: distinguish between UDF agg functions and other UDF functions.
|
|
self.inside_agg = True
|
|
self.context.headers.add('"./server/aggregations.h"')
|
|
if type(val) is list and len(val) > 1:
|
|
cfunc = self.func_maps[key]
|
|
cfunc = cfunc[len(val) - 1] if type(cfunc) is list else cfunc
|
|
self._expr += f"{cfunc}("
|
|
for i, p in enumerate(val):
|
|
self._expr += expr(self, p)._expr + (','if i<len(val)-1 else '')
|
|
else:
|
|
funcname = self.func_maps[key]
|
|
funcname = funcname[0] if type(funcname) is list else funcname
|
|
self._expr += f"{funcname}("
|
|
self._expr += expr(self, val)._expr
|
|
self._expr += ')'
|
|
self.inside_agg = False
|
|
elif key in self.binary_ops:
|
|
l = expr(self, val[0])._expr
|
|
r = expr(self, val[1])._expr
|
|
self._expr += f'({l}{self.binary_ops[key]}{r})'
|
|
elif key in self.compound_ops:
|
|
x = []
|
|
if type(val) is list:
|
|
for v in val:
|
|
x.append(expr(self, v)._expr)
|
|
self._expr = self.compound_ops[key][1](x)
|
|
elif key in self.unary_ops:
|
|
self._expr += f'{self.unary_ops[key]}({expr(self, val)._expr})'
|
|
else:
|
|
self.context.Error(f'Undefined expr: {key}{val}')
|
|
|
|
if key in self.coumpound_generating_ops and not self.is_compound:
|
|
self.is_compound = True
|
|
p = self.parent
|
|
while type(p) is expr and not p.is_compound:
|
|
p.is_compound = True
|
|
p = p.parent
|
|
|
|
elif type(node) is str:
|
|
p = self.parent
|
|
while type(p) is expr and not p.isvector:
|
|
p.isvector = True
|
|
p = p.parent
|
|
|
|
self._expr, self.raw_col = self.datasource.parse_col_names(node, self.materialize_cols, True)
|
|
self.raw_col = self.raw_col if type(self.raw_col) is ColRef else None
|
|
if self.__abs and self.raw_col:
|
|
self._expr = self.raw_col.reference() + ("" if self.inside_agg else index_expr)
|
|
elif type(node) is bool:
|
|
self._expr = '1' if node else '0'
|
|
else:
|
|
self._expr = f'{node}'
|
|
def toCExpr(_expr):
|
|
return lambda x = None, y = None : eval(start_expr + _expr + end_expr)
|
|
def consume(self, _):
|
|
self.cexpr = expr.toCExpr(self._expr)
|
|
def __str__(self):
|
|
return self.cexpr
|
|
|