You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
91 lines
3.2 KiB
91 lines
3.2 KiB
from engine.ast import ast_node
|
|
|
|
|
|
class expr(ast_node):
|
|
name='expr'
|
|
builtin_func_maps = {
|
|
'max': 'max',
|
|
'min': 'min',
|
|
'avg': 'avg',
|
|
'sum': 'sum',
|
|
'mod':'mod',
|
|
'mins': ['mins', 'minsw'],
|
|
'maxs': ['maxs', 'maxsw'],
|
|
'avgs': ['avgs', 'avgsw'],
|
|
'sums': ['sums', 'sumsw'],
|
|
}
|
|
binary_ops = {
|
|
'sub':'-',
|
|
'add':'+',
|
|
'mul':'*',
|
|
'div':'%',
|
|
'and':'&',
|
|
'or':'|',
|
|
'gt':'>',
|
|
'lt':'<',
|
|
}
|
|
compound_ops = {
|
|
'ge' : [2, lambda x: f'~({x[0]}<{x[1]})'],
|
|
'le' : [2, lambda x: f'~({x[0]}>{x[1]})'],
|
|
}
|
|
unary_ops = {
|
|
'neg' : '-',
|
|
'not' : '~'
|
|
}
|
|
def __init__(self, parent, node):
|
|
ast_node.__init__(self, parent, node, None)
|
|
|
|
def init(self, _):
|
|
from engine.projection import projection
|
|
parent = self.parent
|
|
self.isvector = parent.isvector if type(parent) is expr else False
|
|
if type(parent) in [projection, expr]:
|
|
self.datasource = parent.datasource
|
|
else:
|
|
self.datasource = self.context.datasource
|
|
self.udf_map = parent.context.udf_map
|
|
self.k9expr = ''
|
|
self.func_maps = {**self.udf_map, **self.builtin_func_maps}
|
|
|
|
def produce(self, node):
|
|
if type(node) is dict:
|
|
for key, val in node.items():
|
|
if key in self.func_maps:
|
|
# if type(val) in [dict, str]:
|
|
if type(val) is list and len(val) > 1:
|
|
k9func = self.func_maps[key]
|
|
k9func = k9func[len(val) - 1] if type(k9func) is list else k9func
|
|
self.k9expr += f"{k9func}["
|
|
for i, p in enumerate(val):
|
|
self.k9expr += expr(self, p).k9expr + (';'if i<len(val)-1 else '')
|
|
else:
|
|
self.k9expr += f"{self.func_maps[key]}["
|
|
self.k9expr += expr(self, val).k9expr
|
|
self.k9expr += ']'
|
|
elif key in self.binary_ops:
|
|
l = expr(self, val[0]).k9expr
|
|
r = expr(self, val[1]).k9expr
|
|
self.k9expr += f'({l}{self.binary_ops[key]}{r})'
|
|
elif key in self.compound_ops:
|
|
x = []
|
|
if type(val) is list:
|
|
for v in val:
|
|
x.append(expr(self, v).k9expr)
|
|
self.k9expr = self.compound_ops[key][1](x)
|
|
elif key in self.unary_ops:
|
|
self.k9expr += f'({expr(self, val).k9expr}{self.unary_ops[key]})'
|
|
else:
|
|
print(f'Undefined expr: {key}{val}')
|
|
|
|
elif type(node) is str:
|
|
p = self.parent
|
|
while type(p) is expr and not p.isvector:
|
|
p.isvector = True
|
|
p = p.parent
|
|
self.k9expr = self.datasource.parse_tablenames(node)
|
|
elif type(node) is bool:
|
|
self.k9expr = '1' if node else '0'
|
|
else:
|
|
self.k9expr = f'{node}'
|
|
def __str__(self):
|
|
return self.k9expr |