You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
3.8 KiB
140 lines
3.8 KiB
#include "RF.h"
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <ctime>
|
|
|
|
struct DT{
|
|
int height;
|
|
long* featureId;
|
|
DT* left = nullptr;
|
|
DT* right = nullptr;
|
|
|
|
// split info
|
|
bool terminate;
|
|
double dpoint;
|
|
long feature;
|
|
long result;
|
|
|
|
// Sparse data record
|
|
double** sortedData; // for each feature, sorted data
|
|
long** sortedResult;
|
|
|
|
// Dense data record
|
|
long*** count = nullptr;// for each feature, number of data belongs to each class and dense value
|
|
double** record = nullptr;// for each feature, record each dense data
|
|
long* max = nullptr;// number of dense value of each feature
|
|
|
|
//long* T; // number of data in each class in this node
|
|
double** dataRecord = nullptr;// Record the data
|
|
long* resultRecord = nullptr;// Record the result
|
|
long size = 0;// Size of the dataset
|
|
};
|
|
|
|
RandomForest::RandomForest(long mTree, long actTree, long rTime, int h, long feature, int* s, double forg, long maxF, long noC, Evaluation eval, long r, long rb){
|
|
srand((long)clock());
|
|
Rebuild = rb;
|
|
if(actTree<1)actTree=1;
|
|
noTree = actTree;
|
|
activeTree = actTree;
|
|
treePointer = 0;
|
|
if(mTree<actTree)mTree=activeTree;
|
|
maxTree = mTree;
|
|
if(rTime<=0)rTime=1;
|
|
rotateTime = rTime;
|
|
timer = 0;
|
|
retain = r;
|
|
|
|
long i;
|
|
height = h;
|
|
f = feature;
|
|
sparse = new int[f];
|
|
for(i=0; i<f; i++)sparse[i]=s[i];
|
|
forget = forg;
|
|
maxFeature = maxF;
|
|
noClasses = noC;
|
|
e = eval;
|
|
|
|
DTrees = (DecisionTree**)malloc(mTree*sizeof(DecisionTree*));
|
|
for(i=0; i<mTree; i++){
|
|
if(i<actTree){
|
|
DTrees[i] = new DecisionTree(height, f, sparse, forget, maxFeature, noClasses, e, r, rb);
|
|
}
|
|
else{
|
|
DTrees[i]=nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RandomForest::fit(double** data, long* result, long size){
|
|
if(timer==rotateTime and maxTree!=activeTree){
|
|
Rotate();
|
|
timer=0;
|
|
}
|
|
long i, j, k;
|
|
double** newData;
|
|
long* newResult;
|
|
for(i=0; i<activeTree; i++){
|
|
newData = new double*[size];
|
|
newResult = new long[size];
|
|
for(j = 0; j<size; j++){
|
|
newData[j] = new double[f];
|
|
for(k=0; k<f; k++){
|
|
newData[j][k] = data[j][k];
|
|
}
|
|
newResult[j] = result[j];
|
|
}
|
|
DTrees[(i+treePointer)%maxTree]->fit(newData, newResult, size);
|
|
}
|
|
timer++;
|
|
}
|
|
|
|
long* RandomForest::fitThenPredict(double** trainData, long* trainResult, long trainSize, double** testData, long testSize){
|
|
fit(trainData, trainResult, trainSize);
|
|
long* testResult = (long*)malloc(testSize*sizeof(long));
|
|
for(long i=0; i<testSize; i++){
|
|
testResult[i] = Test(testData[i]);
|
|
}
|
|
return testResult;
|
|
}
|
|
|
|
void RandomForest::Rotate(){
|
|
if(noTree==maxTree){
|
|
DTrees[(treePointer+activeTree)%maxTree]->Free();
|
|
delete DTrees[(treePointer+activeTree)%maxTree];
|
|
}else{
|
|
noTree++;
|
|
}
|
|
DTrees[(treePointer+activeTree)%maxTree] = new DecisionTree(height, f, sparse, forget, maxFeature, noClasses, e, retain, Rebuild);
|
|
long size = DTrees[(treePointer+activeTree-1)%maxTree]->DTree->size;
|
|
double** newData = new double*[size];
|
|
long* newResult = new long[size];
|
|
for(long j = 0; j<size; j++){
|
|
newData[j] = new double[f];
|
|
for(long k=0; k<f; k++){
|
|
newData[j][k] = DTrees[(treePointer+activeTree-1)%maxTree]->DTree->dataRecord[j][k];
|
|
}
|
|
newResult[j] = DTrees[(treePointer+activeTree-1)%maxTree]->DTree->resultRecord[j];
|
|
}
|
|
|
|
DTrees[(treePointer+activeTree)%maxTree]->fit(newData, newResult, size);
|
|
DTrees[treePointer]->Stablelize();
|
|
if(++treePointer==maxTree)treePointer=0;
|
|
}
|
|
|
|
|
|
long RandomForest::Test(double* data){
|
|
long i;
|
|
long predict[noClasses];
|
|
for(i=0; i<noClasses; i++)predict[i]=0;
|
|
for(i=0; i<noTree; i++){
|
|
predict[DTrees[i]->Test(data, DTrees[i]->DTree)]++;
|
|
}
|
|
|
|
long ret = 0;
|
|
for(i=1; i<noClasses; i++){
|
|
if(predict[i]>predict[ret])ret = i;
|
|
}
|
|
|
|
return ret;
|
|
}
|