package chocopy.pa3; import java.net.Socket; import java.util.HashMap; import java.util.List; import java.util.Map; import chocopy.common.analysis.AbstractNodeAnalyzer; import chocopy.common.analysis.SymbolTable; import chocopy.common.astnodes.*; import chocopy.common.analysis.types.*; import chocopy.common.codegen.*; import static chocopy.common.codegen.RiscVBackend.Register.*; import chocopy.common.codegen.RiscVBackend.Register; /** * This is where the main implementation of PA3 will live. * *

* A large part of the functionality has already been implemented in the base * class, CodeGenBase. Make sure to read through that class, since you will want * to use many of its fields and utility methods in this class when emitting * code. * *

* Also read the PDF spec for details on what the base class does and what APIs * it exposes for its sub-class (this one). Of particular importance is knowing * what all the SymbolInfo classes contain. */ public class CodeGenImpl extends CodeGenBase { /** Label for built-in routines. */ protected final Label makeintLabel = new Label("makeint"); protected final Label strneqlLablel = new Label("strneql"); protected final Label streqlLablel = new Label("streql"); protected final Label makeboolLablel = new Label("makebool"); protected final Label strcatLablel = new Label("strcat"); protected final Label concatLablel = new Label("concat"); protected final Label conslistLablel = new Label("conslist"); /** Operation on None. */ private final Label errorNone = new Label("error.None"); /** Division by zero. */ private final Label errorDiv = new Label("error.Div"); /** Index out of bounds. */ private final Label errorOob = new Label("error.OOB"); /** Let's try to implement everything first.*/ private final Label errorNI = new Label("error.NI"); /** A code generator emitting instructions to BACKEND. */ public CodeGenImpl(RiscVBackend backend) { super(backend); } /** * Emits the top level of the program. * *

* This method is invoked exactly once, and is surrounded by some boilerplate * code that: (1) initializes the heap before the top-level begins and (2) exits * after the top-level ends. * *

* You only need to generate code for statements. * * @param statements top level statements */ protected void emitTopLevel(List statements) { StmtAnalyzer stmtAnalyzer = new StmtAnalyzer(null); backend.emitADDI(SP, SP, -2 * backend.getWordSize(), "Saved FP and saved RA (unused at top level)."); backend.emitSW(ZERO, SP, 0, "Top saved FP is 0."); backend.emitSW(ZERO, SP, 4, "Top saved RA is 0."); backend.emitADDI(FP, SP, 2 * backend.getWordSize(), "Set FP to previous SP."); for (Stmt stmt : statements) { stmt.dispatch(stmtAnalyzer); } backend.emitLI(A0, EXIT_ECALL, "Code for ecall: exit"); backend.emitEcall(null); } /** * Emits the code for a function described by FUNCINFO. * *

* This method is invoked once per function and method definition. At the code * generation stage, nested functions are emitted as separate functions of their * own. So if function `bar` is nested within function `foo`, you only emit * `foo`'s code for `foo` and only emit `bar`'s code for `bar`. */ protected void emitUserDefinedFunction(FuncInfo funcInfo) { backend.emitGlobalLabel(funcInfo.getCodeLabel()); // --- Prologue --- // space for return address = 1 // space for control link = 1 // space for static link = 1 // space for params = num of params // space for locals = num of locals int requiredStackSpace = (1 + 1 + 1 + funcInfo.getLocals().size() + funcInfo.getParams().size())*wordSize; backend.emitADDI(SP, SP, -requiredStackSpace, "Reserve space for stack frame."); backend.emitSW(RA, SP, requiredStackSpace-4, "return address"); backend.emitSW(FP, SP, requiredStackSpace-8, "control link"); // if we want to add static link //backend.emitSW(FP, SP, requiredStackSpace-12, "static link"); backend.emitADDI(FP, SP, requiredStackSpace, "New fp is at old SP."); StmtAnalyzer stmtAnalyzer = new StmtAnalyzer(funcInfo); int emptySlotNum = 4; for (StackVarInfo var : funcInfo.getLocals()) { // store at requiredStackSpace-emptySlotNum*wordSize(SP), then emptySlotNum++ Literal varLitral = var.getInitialValue(); varLitral.dispatch(stmtAnalyzer); // All Literals should save locations for the values in A0 backend.emitSW(A0, SP, requiredStackSpace-emptySlotNum*wordSize, "Push local variable " + var.getVarName() + " onto stack"); emptySlotNum++; } // --- Function Body --- // statements load all the variables that caller put on stack // statements use fp to load the variables // example: 0(fp) is the last variable (z) while 8(fp) is the first variable (x) // for function with 3 params f(x, y, z) for (Stmt stmt : funcInfo.getStatements()) { //System.out.println(stmt.toString()); stmt.dispatch(stmtAnalyzer); } backend.emitJ(stmtAnalyzer.epilogue, "Jump to function epilogue"); // --- Epilogue --- backend.emitLocalLabel(stmtAnalyzer.epilogue, "Epilogue"); backend.emitLW(RA, FP, -4, "Get return address"); backend.emitLW(FP, FP, -8, "Use control link to restore caller's fp"); backend.emitADDI(SP, SP, requiredStackSpace, "Restore stack pointer"); backend.emitJR(RA, "Return to caller"); } /** An analyzer that encapsulates code generation for statements. */ private class StmtAnalyzer extends AbstractNodeAnalyzer { /* * The symbol table has all the info you need to determine what a given * identifier 'x' in the current scope is. You can use it as follows: SymbolInfo * x = sym.get("x"); * * A SymbolInfo can be one the following: - ClassInfo: a descriptor for classes * - FuncInfo: a descriptor for functions/methods - AttrInfo: a descriptor for * attributes - GlobalVarInfo: a descriptor for global variables - StackVarInfo: * a descriptor for variables allocated on the stack, such as locals and * parameters * * Since the input program is assumed to be semantically valid and well-typed at * this stage, you can always assume that the symbol table contains valid * information. For example, in an expression `foo()` you KNOW that * sym.get("foo") will either be a FuncInfo or ClassInfo, but not any of the * other infos and never null. * * The symbol table in funcInfo has already been populated in the base class: * CodeGenBase. You do not need to add anything to the symbol table. Simply * query it with an identifier name to get a descriptor for a function, class, * variable, etc. * * The symbol table also maps nonlocal and global vars, so you only need to * lookup one symbol table and it will fetch the appropriate info for the var * that is currently in scope. */ /** Symbol table for my statements. */ private final SymbolTable sym; /** Label of code that exits from procedure. */ protected final Label epilogue; /** The descriptor for the current function, or null at the top level. */ private final FuncInfo funcInfo; /** Label of code that exits from block. */ protected Label elseBlock; /** Variable to keep track of offsets of stored variables */ private Map offsetMap = new HashMap<>(); private final String size_label; /** Variable to store offset from frame pointer to identify next * empty space on stack frame to store variable*/ private int sp_off; /** Variable to store maximum possible offset depending on stack size.*/ private int max_sp; /** * An analyzer for the function described by FUNCINFO0, which is null for the * top level. */ StmtAnalyzer(FuncInfo funcInfo0) { funcInfo = funcInfo0; if (funcInfo == null) { sym = globalSymbols; sp_off = max_sp = 2; size_label = "@..main.size"; } else { sym = funcInfo.getSymbolTable(); sp_off = max_sp = funcInfo0.getLocals().size() + 2; size_label = "@"+funcInfo0.getFuncName()+".size"; } epilogue = generateLocalLabel(); } private void incSp(int i){ sp_off+=i+1; max_sp = max_sp >= sp_off?max_sp:sp_off; } // *********** functions start *********** public Register analyze(CallExpr node) { backend.emitLW(T6, FP, 0, "Inside CallExpr: " + node.function.name); SymbolInfo Ty = globalSymbols.get(node.function.name); if(Ty instanceof ClassInfo){ //object create ClassInfo cls = (ClassInfo) Ty; /** la a0, $DoublingVector$prototype # Load pointer to prototype of: DoublingVector jal alloc # Allocate new object in A0 sw a0, -12(fp) # Push on stack slot 3 sw a0, -16(fp) # Push argument 0 from last. addi sp, fp, -16 # Set SP to last argument. lw a1, 8(a0) # Load address of object's dispatch table lw a1, 0(a1) # Load address of method: DoublingVector.__init__ jalr a1 # Invoke method: DoublingVector.__init__ addi sp, fp, -@..main.size # Set SP to stack frame top. lw a0, -12(fp) # Pop stack slot 3 */ backend.emitLA(A0, cls.getPrototypeLabel(), String.format("Load pointer to prototype of: %s", cls.getClassName())); backend.emitJAL(objectAllocLabel, "Allocate new object in A0"); backend.emitSW(A0, FP, -sp_off*wordSize, String.format("Push on stack slot %d", sp_off)); incSp(0); backend.emitSW(A0, FP, -sp_off*wordSize, "Push argument 0 from last."); backend.emitADDI(SP, FP, sp_off, "Set SP to last argument."); backend.emitLW(A1, A0, getDispatchTableOffset(), "Load address of object's dispatch table"); backend.emitLW(A1, A1, getMethodOffset(cls, "__init__"), String.format("Load address of method: %s.__init__", cls.getClassName())); backend.emitJALR(A1, String.format("Invoke method: %s.__init", cls.getClassName())); backend.emitADDI(SP, FP, "-"+size_label, "Set SP to stack frame top."); -- sp_off; backend.emitLW(A0, FP, -sp_off*wordSize, String.format("Pop stack slot %d", sp_off)); } else { // function Identifier functionId = node.function; List args = node.args; int spaceRequiredForArgs = (args.size() + 1)*4; //backend.emitSW(A0, SP, -4, "Put static link"); for (int i = 0; i < args.size(); i++) { int argNum = i + 1; int slotNum = argNum + 1; // We have extra slot for static link Expr expr = args.get(i); expr.dispatch(this); // All expressions should save their end result in A0 // So, once expr is evaluated add value inside A0 onto stack as an argument backend.emitSW(A0, SP, -wordSize*slotNum, "Push argument " + argNum + " from left"); } backend.emitADDI(SP, SP, -spaceRequiredForArgs, "Set SP to last argument."); backend.emitJAL(new Label("$"+functionId.name), "Invoke function: " + functionId.name); backend.emitADDI(SP, SP, spaceRequiredForArgs, "Set SP to stack frame top."); } return A0; } public Register analyze(MethodCallExpr node) { backend.emitLW(T6, FP, 0, "Inside MethodCallExpr: " + node.method.member.name); Register obj = node.method.object.dispatch(this); int n_args = node.args.size(); Label label = generateLocalLabel(); backend.emitBNEZ(obj, label, "Ensure not None"); backend.emitJ(errorNone, "Go to error handler"); backend.emitLocalLabel(label, "Not None"); incSp(n_args+1); backend.emitSW(obj, FP, (n_args - sp_off) *wordSize, String.format("Push argument %d from last.", n_args)); for (int i = 0; i < n_args; ++i) backend.emitSW(node.args.get(i).dispatch(this), FP, (n_args - i - 1 - sp_off) * wordSize, String.format("Push argument %d from last.", n_args - i - 1)); backend.emitLW(A0, FP, (n_args- sp_off) * wordSize, String.format("Peek stack slot %d", sp_off - (n_args + 1))); ClassInfo objectClass = (ClassInfo)sym.get(((Identifier)node.method.object).name); backend.emitLW(A1, A0, getDispatchTableOffset(), "Load address of object's dispatch table"); backend.emitLW(A1, A1, getMethodOffset(objectClass, node.method.member.name), String.format("Load address of method: %s.%s", objectClass.getClassName(), node.method.member.name)); backend.emitADDI(SP, FP, -sp_off * wordSize, "Set SP to last argument."); backend.emitJALR(A1, String.format("Invoke method: %s.%s", objectClass.getClassName(), node.method.member.name)); backend.emitInsn(String.format("addi sp, fp, -%s", size_label), "Set SP to stack frame top."); sp_off -= n_args+1; return A0; } @Override public Register analyze(ReturnStmt stmt) { backend.emitLW(T6, FP, 0, "Inside ReturnStmt: "); Expr expr = stmt.value; if (expr == null) { backend.emitMV(A0, ZERO, "Return None"); return A0; } // All expressions should save their end result in A0 expr.dispatch(this); return A0; } // *********** functions end *********** @Override public Register analyze(NoneLiteral node) { backend.emitLW(T6, FP, 0, "Inside NoneLiteral: "); backend.emitMV(Register.A0, Register.ZERO, "Load none"); return Register.A0; } @Override public Register analyze(StringLiteral node) { backend.emitLW(T6, FP, 0, "Inside StringLiteral: "); Label l = constants.getStrConstant(node.value); backend.emitLA(Register.A0, l, "Load string literal"); return Register.A0; } @Override public Register analyze(BooleanLiteral node) { backend.emitLW(T6, FP, 0, "Inside BooleanLiteral: "); if(node.value==true) backend.emitLI(Register.A0, 1, "Load boolean literal: true "); else backend.emitLI(Register.A0, 0, "Load boolean literal: false "); return Register.A0; } @Override public Register analyze(AssignStmt node) { backend.emitLW(T6, FP, 0, "Inside AssignStmt: "); Type t = node.value.getInferredType(); // if(t.isSpecialType() || t.isListType()) { Register reg = node.value.dispatch(this); if (reg == null) reg = A0; if (sym.getParent() == null) { for(Expr target: node.targets) { if(target instanceof Identifier) { GlobalVarInfo gvi=(GlobalVarInfo)sym.get(((Identifier)target).name); backend.emitSW(reg, gvi.getLabel(), Register.T0, "Assign global: "+gvi.getVarName()+"(using tmp register)"); } else { Register ret = target.dispatch(this); backend.emitSW(T1, ret, 0, "Set list element"); } } } else { for(Expr target: node.targets) { StackVarInfo svi = (StackVarInfo) sym.get(((Identifier)target).name); int loc = offsetMap.get(svi); backend.emitSW(reg, Register.FP, -loc*4, "Load local variable: "+svi.getVarName()); } } } return Register.A0; } @Override public Register analyze(ExprStmt node) { backend.emitLW(T6, FP, 0, "Inside ExprStmt: "); node.expr.dispatch(this); return null; } @Override public Register analyze(IfExpr node) { node.condition.dispatch(this); Label ln = generateLocalLabel(); node.thenExpr.dispatch(this); backend.emitJ(ln, "Jump to end of if expression"); backend.emitLocalLabel(elseBlock, "Else part of if expression"); node.elseExpr.dispatch(this); backend.emitLocalLabel(ln, "End of if expression"); return A0; } @Override public Register analyze(IfStmt node) { node.condition.dispatch(this); Label ln = generateLocalLabel(); for(Stmt s:node.thenBody) s.dispatch(this); backend.emitJ(ln, "Jump to end of if statement"); backend.emitLocalLabel(elseBlock, "Else part of if statement"); for(Stmt s:node.elseBody) s.dispatch(this); backend.emitLocalLabel(ln, "End of if statement"); return null; } @Override public Register analyze(BinaryExpr node) { String operator = node.operator; backend.emitLW(T6, FP, 0, "Inside BinaryExpr: "); if(node.left.getInferredType().equals(Type.INT_TYPE) && node.right.getInferredType().equals(Type.INT_TYPE)) { node.left.dispatch(this); backend.emitSW(Register.A0, Register.FP, -sp_off*wordSize, "Push on stack slot "+sp_off); sp_off++; node.right.dispatch(this); sp_off--; backend.emitLW(Register.T0, Register.FP, -sp_off*wordSize, "Pop stack slot "+sp_off); // Arithmetic Operators if(operator.equals("+")) backend.emitADD(Register.A0, Register.A0, Register.T0, "Add operation"); else if(operator.equals("-")) backend.emitSUB(Register.A0, Register.A0, Register.T0, "Sub operation"); else if(operator.equals("*")) backend.emitMUL(Register.A0, Register.A0, Register.T0, "Mul operation"); else if(operator.equals("//")) { Label label = generateLocalLabel(); backend.emitBNEZ(Register.T0, label, "Check for Divide-by-zero"); backend.emitJAL(errorDiv, "Divide-by-zero error"); backend.emitLocalLabel(label, "Divide since divisor not zero"); backend.emitDIV(Register.A0, Register.A0, Register.T0, "Divide operation"); } else if(operator.equals("%")) { Label label = generateLocalLabel(); backend.emitBNEZ(Register.T0, label, "Check for Divide-by-zero"); backend.emitJAL(errorDiv, "Divide-by-zero error"); backend.emitLocalLabel(label, "Divide since divisor not zero"); backend.emitREM(Register.A0, Register.A0, Register.T0, "Modulus operation"); } else { // Comparison operators //elseBlock = generateLocalLabel(); String comment="Operator: "+operator; if(operator.equals("==")) { backend.emitXOR(Register.A0, Register.A0, Register.T0, "Check for equality"); backend.emitSEQZ(Register.A0, Register.A0, "Result is True if XOR equals 0"); } else if(operator.equals("!=")) { backend.emitXOR(Register.A0, Register.A0, Register.T0, "Check for inequality"); backend.emitSNEZ(Register.A0, Register.A0, "Result is True if XOR does not equal 0"); } else if(operator.equals("<")) backend.emitSLT(Register.A0,Register.A0, Register.T0, comment); else if(operator.equals(">")) backend.emitSLT(Register.A0, Register.T0, Register.A0, comment); else if(operator.equals("<=")) { backend.emitADDI(Register.T0,Register.T0, 1, "Increment by 1"); backend.emitSLT(Register.A0, Register.A0, Register.T0, comment); } else if(operator.equals(">=")) { backend.emitADDI(Register.A0,Register.A0, 1, "Increment by 1"); backend.emitSLT(Register.A0, Register.A0, Register.T0, comment); } else if(operator.equals("is")) { backend.emitXOR(Register.A0, Register.A0, Register.T0, "is operation"); backend.emitSEQZ(Register.A0, Register.A0, "Result is True if XOR equals 0"); } else {} } } else if(node.left.getInferredType().equals(Type.STR_TYPE) && node.right.getInferredType().equals(Type.STR_TYPE)) { } return A0; } @Override public Register analyze(UnaryExpr node) { if(node.operator.equals("-") && node.getInferredType().equals(Type.INT_TYPE)) { node.operand.dispatch(this); backend.emitLI(Register.T0, -1, "Set value of Register T0 to -1"); backend.emitMUL(Register.A0, Register.A0, Register.T0, "Multiply by -1"); } else if(node.operator.equals("not") && node.getInferredType().equals(Type.BOOL_TYPE)) { node.operand.dispatch(this); backend.emitSEQZ(Register.T0, Register.A0, "Not operation on Register A0"); } else return null; return Register.A0; } @Override public Register analyze(Identifier node) { backend.emitLW(T6, FP, 0, "Inside Identifier: "); if (sym.getParent() == null) { GlobalVarInfo gvi=(GlobalVarInfo) sym.get(node.name); backend.emitLW(Register.A0, gvi.getLabel(), "Load global: "+gvi.getVarName()); } else { // FIXME: This breaks, so had to comment it // VarInfo svi = (VarInfo) sym.get(node.name); // int loc = offsetMap.get(svi); // backend.emitLW(Register.A0, Register.FP, -loc*4, "Load local variable: "+svi.getVarName()); } return null; } @Override public Register analyze(VarDef node) { StackVarInfo svi = (StackVarInfo) sym.get(node.var.identifier.name); node.value.dispatch(this); backend.emitSW(Register.A0, Register.FP, -sp_off*wordSize, "Store variable "+node.var.identifier.name+" value in Stack"); offsetMap.put(svi, sp_off); sp_off++; return null; } @Override public Register analyze(WhileStmt node) { Label startLoop = generateLocalLabel(); backend.emitLocalLabel(startLoop, "Beginning of while loop"); node.condition.dispatch(this); Label endLoop = elseBlock; for(Stmt stmt:node.body) stmt.dispatch(this); backend.emitJ(startLoop, "Jump to beginning of loop"); backend.emitLocalLabel(endLoop, "End of while loop"); return null; } @Override public Register analyze(ListExpr node) { int l = node.elements.size(); int i = l; for(Expr exp:node.elements) { Register r = exp.dispatch(this); backend.emitSW(r,Register.FP,-sp_off*wordSize,"Push argument "+i+" from last."); sp_off++; i--; } backend.emitLI(Register.A0, l, "Pass list length"); backend.emitSW(Register.A0, Register.FP, -sp_off*wordSize, "Push argument "+i+" from last."); sp_off++; backend.emitADDI(Register.SP, Register.SP, -sp_off*wordSize, "Set SP to last argument."); //TODO: Store reference to variable return Register.A0; } @Override public Register analyze(IntegerLiteral node) { backend.emitLW(T6, FP, 0, "Inside IntegerLiteral: " + node.value); backend.emitLI(A0, node.value, "Load integer literal " + node.value); backend.emitJAL(makeintLabel, "Box integer"); // System.out.println("+++ Inside IntegerLiteral"); // backend.emitLA(A0, new Label("$int$prototype"), "Load prototype"); // backend.emitJAL(new Label("ra, alloc"), ""); // backend.emitLI(T0, node.value, "Load integer " + node.value); // backend.emitSW(T0, A0, "@.__int__", null); return A0; } @Override public Register analyze(ForStmt node) { //System.out.println(node); /* node. Label startLoop = generateLocalLabel(); backend.emitLocalLabel(startLoop, "Beginning of while loop"); node.condition.dispatch(this); Label endLoop = elseBlock; for(Stmt stmt:node.body) stmt.dispatch(this); backend.emitJ(startLoop, "Jump to beginning of loop"); backend.emitLocalLabel(endLoop, "End of while loop");*/ return null; } @Override public Register analyze(IndexExpr node) { incSp(1); Register listObj = node.list.dispatch(this); backend.emitSW(listObj, FP, -sp_off * wordSize, String.format("Push on stack slot %d", sp_off)); Register index = node.index.dispatch(this); Register vacantReg = (index != A0) ? A0 : A1; if (node.list.getInferredType().isListType()) { backend.emitLW(vacantReg, FP, -sp_off * wordSize, String.format("Pop stack slot %d", sp_off)); this.d(vacantReg); return this.a(vacantReg, index, A0, false); }else{ this.a(0, vacantReg); Register a = a(index); Label ch = generateLocalLabel(); backend.emitLW(a, vacantReg, getAttrOffset(strClass, "__len__"), "Load attribute: __len__"); backend.emitBLTU(index, a, ch, "Ensure 0 <= idx < len"); backend.emitJ(f, "Go to error handler"); backend.emitLocalLabel(ch, "Index within bounds"); this.c(index); Register a2 = this.a(false); this.a(1); return a2; } } public Register analyze(MemberExpr node) { ClassInfo objectClass = (ClassInfo) globalSymbols.get(node.object.getInferredType().className()); Label label = generateLocalLabel(); Register obj = node.object.dispatch(this); backend.emitBNEZ(obj, label, "Ensure not None"); backend.emitJ(errorNone, "Go to error handler"); backend.emitLocalLabel(label, "Not None"); backend.emitLW(A0, obj, getAttrOffset(objectClass, node.member.name), String.format("Get attribute: %s.%s", objectClass.getClassName(), node.member.name)); return A0; } } /** * Emits custom code in the CODE segment. * *

This method is called after emitting the top level and the function bodies for each * function. * *

You can use this method to emit anything you want outside of the top level or functions, * e.g. custom routines that you may want to call from within your code to do common tasks. This * is not strictly needed. You might not modify this at all and still complete the assignment. * *

To start you off, here is an implementation of three routines that will be commonly needed * from within the code you will generate for statements. * *

The routines are error handlers for operations on None, index out of bounds, and division * by zero. They never return to their caller. Just jump to one of these routines to throw an * error and exit the program. For example, to throw an OOB error: backend.emitJ(errorOob, "Go * to out-of-bounds error and abort"); */ protected void emitCustomCode() { emitStdFunc("concat"); emitStdFunc("conslist"); emitStdFunc("strcat"); emitStdFunc("streql"); emitStdFunc("strneql"); emitStdFunc("makeint"); emitStdFunc("makebool"); emitErrorFunc(errorNone, "Operation on None"); emitErrorFunc(errorDiv, "Division by zero"); emitErrorFunc(errorOob, "Index out of bounds"); // emitErrorFunc(errorNI, "Not Implemented."); } /** Emit an error routine labeled ERRLABEL that aborts with message MSG. */ private void emitErrorFunc(Label errLabel, String msg) { backend.emitGlobalLabel(errLabel); backend.emitLI(A0, ERROR_NONE, "Exit code for: " + msg); backend.emitLA(A1, constants.getStrConstant(msg), "Load error message as str"); backend.emitADDI( A1, A1, getAttrOffset(strClass, "__str__"), "Load address of attribute __str__"); backend.emitJ(abortLabel, "Abort"); } }