You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ChocoPy/src/main/java/chocopy/pa3/CodeGenImpl.java

188 lines
7.7 KiB

package chocopy.pa3;
import chocopy.common.analysis.AbstractNodeAnalyzer;
import chocopy.common.analysis.SymbolTable;
import chocopy.common.astnodes.ReturnStmt;
import chocopy.common.astnodes.Stmt;
import chocopy.common.codegen.*;
import java.util.List;
import static chocopy.common.codegen.RiscVBackend.Register.*;
/**
* This is where the main implementation of PA3 will live.
*
* <p>A large part of the functionality has already been implemented in the base class, CodeGenBase.
* Make sure to read through that class, since you will want to use many of its fields and utility
* methods in this class when emitting code.
*
* <p>Also read the PDF spec for details on what the base class does and what APIs it exposes for
* its sub-class (this one). Of particular importance is knowing what all the SymbolInfo classes
* contain.
*/
public class CodeGenImpl extends CodeGenBase {
/** A code generator emitting instructions to BACKEND. */
public CodeGenImpl(RiscVBackend backend) {
super(backend);
}
/** Operation on None. */
private final Label errorNone = new Label("error.None");
/** Division by zero. */
private final Label errorDiv = new Label("error.Div");
/** Index out of bounds. */
private final Label errorOob = new Label("error.OOB");
/**
* Emits the top level of the program.
*
* <p>This method is invoked exactly once, and is surrounded by some boilerplate code that: (1)
* initializes the heap before the top-level begins and (2) exits after the top-level ends.
*
* <p>You only need to generate code for statements.
*
* @param statements top level statements
*/
protected void emitTopLevel(List<Stmt> statements) {
StmtAnalyzer stmtAnalyzer = new StmtAnalyzer(null);
backend.emitADDI(
SP, SP, -2 * backend.getWordSize(), "Saved FP and saved RA (unused at top level).");
backend.emitSW(ZERO, SP, 0, "Top saved FP is 0.");
backend.emitSW(ZERO, SP, 4, "Top saved RA is 0.");
backend.emitADDI(FP, SP, 2 * backend.getWordSize(), "Set FP to previous SP.");
for (Stmt stmt : statements) {
stmt.dispatch(stmtAnalyzer);
}
backend.emitLI(A0, EXIT_ECALL, "Code for ecall: exit");
backend.emitEcall(null);
}
/**
* Emits the code for a function described by FUNCINFO.
*
* <p>This method is invoked once per function and method definition. At the code generation
* stage, nested functions are emitted as separate functions of their own. So if function `bar`
* is nested within function `foo`, you only emit `foo`'s code for `foo` and only emit `bar`'s
* code for `bar`.
*/
protected void emitUserDefinedFunction(FuncInfo funcInfo) {
backend.emitGlobalLabel(funcInfo.getCodeLabel());
StmtAnalyzer stmtAnalyzer = new StmtAnalyzer(funcInfo);
for (Stmt stmt : funcInfo.getStatements()) {
stmt.dispatch(stmtAnalyzer);
}
backend.emitMV(A0, ZERO, "Returning None implicitly");
backend.emitLocalLabel(stmtAnalyzer.epilogue, "Epilogue");
// FIXME: {... reset fp etc. ...}
backend.emitJR(RA, "Return to caller");
}
/** An analyzer that encapsulates code generation for statements. */
private class StmtAnalyzer extends AbstractNodeAnalyzer<Void> {
/*
* The symbol table has all the info you need to determine
* what a given identifier 'x' in the current scope is. You can
* use it as follows:
* SymbolInfo x = sym.get("x");
*
* A SymbolInfo can be one the following:
* - ClassInfo: a descriptor for classes
* - FuncInfo: a descriptor for functions/methods
* - AttrInfo: a descriptor for attributes
* - GlobalVarInfo: a descriptor for global variables
* - StackVarInfo: a descriptor for variables allocated on the stack,
* such as locals and parameters
*
* Since the input program is assumed to be semantically
* valid and well-typed at this stage, you can always assume that
* the symbol table contains valid information. For example, in
* an expression `foo()` you KNOW that sym.get("foo") will either be
* a FuncInfo or ClassInfo, but not any of the other infos
* and never null.
*
* The symbol table in funcInfo has already been populated in
* the base class: CodeGenBase. You do not need to add anything to
* the symbol table. Simply query it with an identifier name to
* get a descriptor for a function, class, variable, etc.
*
* The symbol table also maps nonlocal and global vars, so you
* only need to lookup one symbol table and it will fetch the
* appropriate info for the var that is currently in scope.
*/
/** Symbol table for my statements. */
private final SymbolTable<SymbolInfo> sym;
/** Label of code that exits from procedure. */
protected final Label epilogue;
/** The descriptor for the current function, or null at the top level. */
private final FuncInfo funcInfo;
/** An analyzer for the function described by FUNCINFO0, which is null for the top level. */
StmtAnalyzer(FuncInfo funcInfo0) {
funcInfo = funcInfo0;
if (funcInfo == null) {
sym = globalSymbols;
} else {
sym = funcInfo.getSymbolTable();
}
epilogue = generateLocalLabel();
}
// FIXME: Example of statement.
@Override
public Void analyze(ReturnStmt stmt) {
// FIXME: Here, we emit an instruction that does nothing. Clearly,
// this is wrong, and you'll have to fix it.
// This is here just to demonstrate how to emit a
// RISC-V instruction.
backend.emitMV(ZERO, ZERO, "No-op");
return null;
}
// FIXME: More, of course.
}
/**
* Emits custom code in the CODE segment.
*
* <p>This method is called after emitting the top level and the function bodies for each
* function.
*
* <p>You can use this method to emit anything you want outside of the top level or functions,
* e.g. custom routines that you may want to call from within your code to do common tasks. This
* is not strictly needed. You might not modify this at all and still complete the assignment.
*
* <p>To start you off, here is an implementation of three routines that will be commonly needed
* from within the code you will generate for statements.
*
* <p>The routines are error handlers for operations on None, index out of bounds, and division
* by zero. They never return to their caller. Just jump to one of these routines to throw an
* error and exit the program. For example, to throw an OOB error: backend.emitJ(errorOob, "Go
* to out-of-bounds error and abort");
*/
protected void emitCustomCode() {
emitErrorFunc(errorNone, "Operation on None");
emitErrorFunc(errorDiv, "Division by zero");
emitErrorFunc(errorOob, "Index out of bounds");
}
/** Emit an error routine labeled ERRLABEL that aborts with message MSG. */
private void emitErrorFunc(Label errLabel, String msg) {
backend.emitGlobalLabel(errLabel);
backend.emitLI(A0, ERROR_NONE, "Exit code for: " + msg);
backend.emitLA(A1, constants.getStrConstant(msg), "Load error message as str");
backend.emitADDI(
A1, A1, getAttrOffset(strClass, "__str__"), "Load address of attribute __str__");
backend.emitJ(abortLabel, "Abort");
}
}