You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
455 lines
14 KiB
455 lines
14 KiB
4 years ago
|
//Header file, contains global variable definitions,
|
||
|
// asynchronized shader loading and utility functions
|
||
|
|
||
|
var mousedx = 0, mousedy = 0, mousedz = 0;
|
||
|
let seldx = 0, seldy = 0, seldz = 0;
|
||
|
var enableSelection = false;
|
||
|
var cx = 1, cy = 1, sx = 0, sy = 0;
|
||
|
var mouselastX, mouselastY;
|
||
|
var fl = 3;
|
||
|
let start;
|
||
|
var vs, fs;
|
||
|
var bezierMat = [-1,3,-3,1,3,-6,3,0,-3,3,0,0,1,0,0,0],
|
||
|
hermiteMat = [2,-3,0,1,-2,3,0,0,1,-2,1,0,1,-1,0,0];
|
||
|
var starColors = [0.9921, 0.5378,0.7109,
|
||
|
0.65, 0.56, 0.992,
|
||
|
0.992,0.7994,0.2402,
|
||
|
0.1760,0.5094,0.5378,
|
||
|
.1164, .1274, .2289,
|
||
|
.9784,.71,.4482,
|
||
|
], n_shapes = starColors.length/3;
|
||
|
var editor = undefined
|
||
|
var cos = Math.cos, sin = Math.sin, tan = Math.tan,
|
||
|
acos = Math.acos, asin = Math.asin, atan = Math.atan,
|
||
|
sqrt = Math.sqrt, pi = Math.PI, abs = Math.abs;
|
||
|
var positionsupdated = true;
|
||
|
var paths = [], origpath= [];
|
||
|
let vsfetch = new XMLHttpRequest();
|
||
|
vsfetch.open('GET', './shader.vert');
|
||
|
vsfetch.onloadend = function () {
|
||
|
vs = vsfetch.responseText;
|
||
|
};
|
||
|
vsfetch.send();
|
||
|
//* LOADING FRAGMENT SHADER
|
||
|
let fsfetch = new XMLHttpRequest();
|
||
|
fsfetch.open('GET', './shader.frag');
|
||
|
fsfetch.onloadend = function () {
|
||
|
fs = (fsfetch.responseText);
|
||
|
//* START EVERYTHING AFTER FRAGMENT SHADER IS DOWNLOADED.
|
||
|
if (editor != undefined)
|
||
|
editor.getSession().setValue(fs);
|
||
|
};
|
||
|
fsfetch.send();
|
||
|
let pathFetch = new XMLHttpRequest();
|
||
|
pathFetch.open('GET', './paths.txt');
|
||
|
pathFetch.onloadend = function () {
|
||
|
let text = pathFetch.responseText;
|
||
|
let currX = 0, currY = 0, maxX = -1000, maxY = -1000, minX = 1000, minY = 1000;
|
||
|
var currShape = [], currCurve = [];
|
||
|
let i = 0;
|
||
|
let postProcess = () => {
|
||
|
if(currShape.length){
|
||
|
let spanX = maxX - minX;
|
||
|
let spanY = maxY - minY;
|
||
|
let span = Math.max(spanX, spanY);
|
||
|
for (var k = 0; k < currShape.length; ++k) {
|
||
|
let funcs = [];
|
||
|
const curve = currShape[k];
|
||
|
for (let j = 0; j < curve.length; j += 2){
|
||
|
curve[j] = (curve[j] - minX) / span-spanX/(span*2);
|
||
|
curve[j + 1] = (curve[j + 1] - minY) / span - spanY/(span*2);
|
||
|
origpath.push(1,curve[j], curve[j+1],0,0,0,1);
|
||
|
if(j%6==0 && j > 5){
|
||
|
let X = [], Y = [];
|
||
|
for(let k = j - 6; k <= j+1; k += 2){
|
||
|
X.push(curve[k]);
|
||
|
Y.push(curve[k+1]);
|
||
|
}
|
||
|
|
||
|
funcs.push([matrix_multiply(bezierMat, X),
|
||
|
matrix_multiply(bezierMat, Y)]);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
paths.push(funcs);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
let read_num = () =>{
|
||
|
let num = 0, sign = 1, accepted = 0;
|
||
|
|
||
|
while(i < text.length && (text[i] <'0' || text[i] > '9') && text[i]!='-') ++i;
|
||
|
if(text[i] == '-')
|
||
|
{
|
||
|
sign = -1;
|
||
|
++i;
|
||
|
}
|
||
|
while(i < text.length&&text[i] >= '0' && text[i] <= '9'){
|
||
|
let n = text[i++] - '0';
|
||
|
accepted *= 10;
|
||
|
accepted += n;
|
||
|
}
|
||
|
|
||
|
num += accepted;
|
||
|
if(text[i] == '.'){
|
||
|
i++;
|
||
|
let multiplier = 0.1;
|
||
|
accepted = 0;
|
||
|
while(i < text.length&&text[i] >= '0' && text[i] <= '9'){
|
||
|
let n = text[i++] - '0';
|
||
|
accepted += n * multiplier;
|
||
|
multiplier /= 10;
|
||
|
}
|
||
|
num += accepted;
|
||
|
}
|
||
|
return num * sign;
|
||
|
}
|
||
|
let cRevs = [], c_idx = 0, prevX = 0, prevY = 0, getC = ()=>{
|
||
|
return cRevs[c_idx--];
|
||
|
}
|
||
|
let get_next = (delta = false) => {
|
||
|
if(delta){
|
||
|
currX = prevX + read_num();
|
||
|
currY = prevY + read_num();
|
||
|
}else{
|
||
|
currX = read_num();
|
||
|
currY = read_num();
|
||
|
}
|
||
|
maxX = currX > maxX? currX:maxX;
|
||
|
maxY = currY > maxY? currY:maxY;
|
||
|
minX = currX < minX? currX:minX;
|
||
|
minY = currY < minY? currY:minY;
|
||
|
|
||
|
currCurve.push(currX);
|
||
|
currCurve.push(currY);
|
||
|
}
|
||
|
while( i < text.length ){
|
||
|
if(text[i] == 'z'){
|
||
|
currCurve.length && currShape.push(currCurve);
|
||
|
currCurve = [];
|
||
|
++i
|
||
|
} else if (text[i] == 'N'){
|
||
|
postProcess();
|
||
|
currShape = [];
|
||
|
maxX = -1000, maxY = -1000, minX = 1000, minY = 1000;
|
||
|
++i;
|
||
|
} else if (text[i] == 'c'){
|
||
|
|
||
|
prevX = currX;
|
||
|
prevY = currY;
|
||
|
|
||
|
for(let j = 0; j < 3; ++j){
|
||
|
get_next(true);
|
||
|
}
|
||
|
} else if (text[i] == 'C'){
|
||
|
for(let j = 0; j < 3; ++j){
|
||
|
get_next();
|
||
|
}
|
||
|
} else if (text[i] == 'M'){
|
||
|
get_next();
|
||
|
}
|
||
|
else ++i;
|
||
|
}
|
||
|
};
|
||
|
pathFetch.send();
|
||
|
let matrix_inverse = src => {
|
||
|
let dst = [], det = 0, cofactor = (c, r) => {
|
||
|
let s = (i, j) => src[c+i & 3 | (r+j & 3) << 2];
|
||
|
return (c+r & 1 ? -1 : 1) * ( (s(1,1) * (s(2,2) * s(3,3) - s(3,2) * s(2,3)))
|
||
|
- (s(2,1) * (s(1,2) * s(3,3) - s(3,2) * s(1,3)))
|
||
|
+ (s(3,1) * (s(1,2) * s(2,3) - s(2,2) * s(1,3))) );
|
||
|
}
|
||
|
for (let n = 0 ; n < 16 ; n++) dst.push(cofactor(n >> 2, n & 3));
|
||
|
for (let n = 0 ; n < 4 ; n++) det += src[n] * dst[n << 2];
|
||
|
for (let n = 0 ; n < 16 ; n++) dst[n] /= det;
|
||
|
return dst;
|
||
|
}
|
||
|
|
||
|
// I HAVE IMPLEMENTED THESE FUNCTIONS FOR YOU
|
||
|
let matrix_identity = () => {
|
||
|
return [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1];
|
||
|
}
|
||
|
let matrix_translate = (x, y, z) => {
|
||
|
let m = matrix_identity();
|
||
|
m[12] = x;
|
||
|
m[13] = y;
|
||
|
m[14] = z;
|
||
|
return m;
|
||
|
}
|
||
|
let matrix_perspective = (m) => {
|
||
|
let ret = []
|
||
|
for (let i = 0; i < 16; i ++)
|
||
|
ret[i] = m[i];
|
||
|
for (let i = 2; i < 15; i += 4)
|
||
|
{
|
||
|
ret[i] = -ret[i];
|
||
|
ret[i+1] += ret[i]/fl;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
// YOU NEED TO PROPERLY IMPLEMENT THE FOLLOWING FIVE FUNCTIONS:
|
||
|
let matrix_rotateX = theta => {
|
||
|
let m = matrix_identity();
|
||
|
m[5] = cos(theta);
|
||
|
m[6] = sin(theta);
|
||
|
m[9] = -sin(theta);
|
||
|
m[10] = cos(theta);
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
let matrix_rotateY = theta => {
|
||
|
let m = matrix_identity();
|
||
|
m[0] = cos(theta);
|
||
|
m[2] = -sin(theta);
|
||
|
m[8] = sin(theta);
|
||
|
m[10] = cos(theta);
|
||
|
return m;
|
||
|
}
|
||
|
let matrix_rotateZ= theta => {
|
||
|
let m = matrix_identity();
|
||
|
m[0] = cos(theta);
|
||
|
m[1] = sin(theta);
|
||
|
m[4] = -sin(theta);
|
||
|
m[5] = cos(theta);
|
||
|
return m;
|
||
|
}
|
||
|
let matrix_scale = (x, y, z) => {
|
||
|
if (y === undefined)
|
||
|
y = z = x;
|
||
|
let m = matrix_identity();
|
||
|
m[0] = x;
|
||
|
m[5] = y;
|
||
|
m[10] = z;
|
||
|
return m;
|
||
|
}
|
||
|
let matrix_multiply = (a, b, m = 4, n = 4) => { //dim=mn*nm=mm
|
||
|
let res = [];
|
||
|
if (b.length < m*n) { //mat-vec multiply (i did this for my convenience)
|
||
|
for (let i = 0; i < m; ++i) {
|
||
|
res[i] = 0;
|
||
|
for (let j = 0; j < n; ++j)
|
||
|
res[i] += b[j] * a[m * j + i];
|
||
|
}
|
||
|
return res;
|
||
|
} //otherwise mm multiply
|
||
|
for (let i = 0; i < m; ++i)
|
||
|
for (let j = 0; j < m; ++j) {
|
||
|
var t = 0;
|
||
|
for (let k = 0; k < n; ++k)
|
||
|
t += a[k * m + j] * b[i * n + k];
|
||
|
res.push(t);
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
let const_multiply = (c, a) => {
|
||
|
let m = [];
|
||
|
for(let i = 0; i < a.length; ++ i)
|
||
|
m[i] = a[i] * c;
|
||
|
return m;
|
||
|
}
|
||
|
function dot(a, b){
|
||
|
let m = 0;
|
||
|
for(let i = 0; i < a.length; ++i)
|
||
|
m += a[i] * b[i];
|
||
|
return m;
|
||
|
}
|
||
|
function plus(a, b){
|
||
|
let m = [];
|
||
|
for(let i = 0; i < a.length; ++i)
|
||
|
m[i] = a[i] + b[i];
|
||
|
return m;
|
||
|
}
|
||
|
function minus(a, b){
|
||
|
let m = [];
|
||
|
for(let i = 0; i < a.length; ++i)
|
||
|
m[i] = a[i] - b[i];
|
||
|
return m;
|
||
|
}
|
||
|
function normalize(v){
|
||
|
let res = [];
|
||
|
sum = 0;
|
||
|
for(let i = 0; i < v.length; ++ i)
|
||
|
sum += v[i] * v[i];
|
||
|
sum = sqrt(sum);
|
||
|
for(let i = 0; i < v.length; ++ i)
|
||
|
res[i] = v[i] / sum;
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
|
||
|
let Matrix = function() {
|
||
|
let top = 0, m = [ matrix_identity() ];
|
||
|
this.identity = () => m[top] = matrix_identity();
|
||
|
this.translate = (x,y,z) => m[top] = matrix_multiply(m[top], matrix_translate(x,y,z));
|
||
|
this.rotateX = theta => m[top] = matrix_multiply(m[top], matrix_rotateX(theta));
|
||
|
this.rotateY = theta => m[top] = matrix_multiply(m[top], matrix_rotateY(theta));
|
||
|
this.rotateZ = theta => m[top] = matrix_multiply(m[top], matrix_rotateZ(theta));
|
||
|
this.scale = (x,y,z) => m[top] = matrix_multiply(m[top], matrix_scale(x,y,z));
|
||
|
this.value = () => m[top];
|
||
|
this.save = () => { m[top+1] = m[top].slice(); top++; }
|
||
|
this.restore = () => --top;
|
||
|
}
|
||
|
|
||
|
let setM = (m) => {
|
||
|
let mm = matrix_perspective(m);
|
||
|
setUniform('Matrix4fv', 'uMatrix', false, mm);
|
||
|
setUniform('Matrix4fv', 'invMatrix', false, matrix_inverse(m));
|
||
|
}
|
||
|
//------ CREATING MESH SHAPES
|
||
|
|
||
|
// CREATE A MESH FROM A PARAMETRIC FUNCTION
|
||
|
|
||
|
let createMesh = (nu, nv, f, data, oid = 0) => {
|
||
|
let tmp = [];
|
||
|
for (let v = 0 ; v < 1 ; v += 1/nv) {
|
||
|
for (let u = 0 ; u <= 1 ; u += 1/nu) {
|
||
|
tmp = tmp.concat(f(u,v,oid,data));
|
||
|
tmp = tmp.concat(f(u,v+1/nv,oid,data));
|
||
|
}
|
||
|
tmp = tmp.concat(f(1,v,oid,data));
|
||
|
tmp = tmp.concat(f(0,v+1/nv,oid,data));
|
||
|
}
|
||
|
return new Float32Array(tmp);
|
||
|
}
|
||
|
|
||
|
// GLUE TWO MESHES TOGETHER INTO A SINGLE MESH
|
||
|
|
||
|
let glueMeshes = (a, b) => {
|
||
|
let c = [];
|
||
|
for (let i = 0 ; i < a.length ; i++)
|
||
|
c.push(a[i]); // a
|
||
|
for (let i = 0 ; i < VERTEX_SIZE ; i++)
|
||
|
c.push(a[a.length - VERTEX_SIZE + i]); // + last vertex of a
|
||
|
for (let i = 0 ; i < VERTEX_SIZE ; i++)
|
||
|
c.push(b[i]); // + first vertex of b
|
||
|
for (let i = 0 ; i < b.length ; i++)
|
||
|
c.push(b[i]); // + b
|
||
|
return new Float32Array(c);
|
||
|
}
|
||
|
|
||
|
|
||
|
let uvToSphere = (u,v, i) => {
|
||
|
let theta = 2 * Math.PI * u;
|
||
|
let phi = Math.PI * (v - .5);
|
||
|
let x = Math.cos(theta) * Math.cos(phi);
|
||
|
let y = Math.sin(theta) * Math.cos(phi);
|
||
|
let z = Math.sin(phi);
|
||
|
return [i, x,y,z].concat(normalize([x, y, z]));
|
||
|
}
|
||
|
|
||
|
let uvToTube = (u,v,i) => {
|
||
|
let theta = 2 * Math.PI * u;
|
||
|
let x = Math.cos(theta);
|
||
|
let y = Math.sin(theta);
|
||
|
let z = 2 * v - 1;
|
||
|
return [i,x,y,z].concat(normalize([x,y,0]));
|
||
|
}
|
||
|
|
||
|
let uvToDisk = (u,v,i,dz) => {
|
||
|
if (dz === undefined)
|
||
|
dz = 0;
|
||
|
let theta = 2 * Math.PI * u;
|
||
|
let x = Math.cos(theta) * v;
|
||
|
let y = Math.sin(theta) * v;
|
||
|
let z = dz;
|
||
|
return [i,x,y,z].concat([0,0,Math.sign(z)]);
|
||
|
}
|
||
|
let uvToTorus = (u,v,i,r) => {
|
||
|
let theta = 2 * pi;
|
||
|
let phi = theta * v;
|
||
|
theta *= u;
|
||
|
let x = 1 + r * cos(phi);
|
||
|
let y = sin(theta)*x;
|
||
|
x *=cos(theta);
|
||
|
let z = r * sin(phi);
|
||
|
let tx = -sin(theta), ty = cos(theta),tsx = sin(phi), tsy = tsx*tx, tsz = cos(phi);
|
||
|
tsx*=-ty;
|
||
|
return [i,x, y, z].concat(normalize([ty*tsz*0.5, -tx*tsz, tx*tsy-ty*tsx]));
|
||
|
}
|
||
|
|
||
|
let createCube = (w, h, l,id) => {
|
||
|
let mesh = [];
|
||
|
mesh=mesh.concat([id, -w/2,-h/2,-l/2,0,-1,0]);
|
||
|
mesh=mesh.concat([id, -w/2,-h/2,l/2,0,-1,0]);
|
||
|
mesh=mesh.concat([id, w/2,-h/2,-l/2,0,-1,0]);
|
||
|
mesh=mesh.concat([id, w/2,-h/2,l/2,0,-1,0]);
|
||
|
|
||
|
mesh=mesh.concat([id, w/2,-h/2,l/2,0,-1,0]);
|
||
|
mesh=mesh.concat([id, w/2,-h/2,l/2,0,0,1]);
|
||
|
|
||
|
mesh=mesh.concat([id, w/2,-h/2,l/2,0,0,1]);
|
||
|
mesh=mesh.concat([id, w/2,h/2,l/2,0,0,1]);
|
||
|
mesh=mesh.concat([id, -w/2,-h/2,l/2,0,0,1]);
|
||
|
mesh=mesh.concat([id, -w/2,h/2,l/2,0,0,1]);
|
||
|
|
||
|
mesh=mesh.concat([id, -w/2,h/2,l/2,0,0,1]);
|
||
|
mesh=mesh.concat([id, -w/2,h/2,l/2,-1,0,0]);
|
||
|
|
||
|
mesh=mesh.concat([id, -w/2,h/2,l/2,-1,0,0]);
|
||
|
mesh=mesh.concat([id, -w/2,-h/2,l/2,-1,0,0]);
|
||
|
mesh=mesh.concat([id, -w/2,h/2,-l/2,-1,0,0]);
|
||
|
mesh=mesh.concat([id, -w/2,-h/2,-l/2,-1,0,0]);
|
||
|
|
||
|
mesh=mesh.concat([id, -w/2,-h/2,-l/2,-1,0,0]);
|
||
|
mesh=mesh.concat([id, -w/2,-h/2,-l/2,0,0,-1]);
|
||
|
|
||
|
mesh=mesh.concat([id, -w/2,-h/2,-l/2,0,0,-1]);
|
||
|
mesh=mesh.concat([id, -w/2,h/2,-l/2,0,0,-1]);
|
||
|
mesh=mesh.concat([id, w/2,-h/2,-l/2,0,0,-1]);
|
||
|
mesh=mesh.concat([id, w/2,h/2,-l/2,0,0,-1]);
|
||
|
|
||
|
mesh=mesh.concat([id, w/2,h/2,-l/2,0,0,-1]);
|
||
|
mesh=mesh.concat([id, w/2,h/2,-l/2,1,0,0]);
|
||
|
|
||
|
mesh=mesh.concat([id, w/2,h/2,-l/2,1,0,0]);
|
||
|
mesh=mesh.concat([id, w/2,h/2,l/2,1,0,0]);
|
||
|
mesh=mesh.concat([id, w/2,-h/2,-l/2,1,0,0]);
|
||
|
mesh=mesh.concat([id, w/2,-h/2,l/2,1,0,0]);
|
||
|
|
||
|
mesh=mesh.concat([id, w/2,-h/2,l/2,1,0,0]);
|
||
|
mesh=mesh.concat([id, w/2,h/2,l/2,0,1,0]);
|
||
|
|
||
|
mesh=mesh.concat([id, w/2,h/2,l/2,0,1,0]);
|
||
|
mesh=mesh.concat([id, w/2,h/2,-l/2,0,1,0]);
|
||
|
mesh=mesh.concat([id, -w/2,h/2,l/2,0,1,0]);
|
||
|
mesh=mesh.concat([id, -w/2,h/2,-l/2,0,1,0]);
|
||
|
return new Float32Array(mesh);
|
||
|
}
|
||
|
|
||
|
function updatePositions() {
|
||
|
let m = matrix_rotateY(-mousedx);
|
||
|
m = matrix_multiply(m, matrix_rotateX(-mousedy));
|
||
|
setUniform('3f', 'V0', m[8] * (fl + mousedz), m[9] * (fl + mousedz), m[10] * (fl + mousedz));
|
||
|
m = const_multiply((fl + 1 + mousedz)/(fl+1), m);
|
||
|
setUniform('Matrix3fv', 'transformation', false, [m[0], m[1], m[2], m[4], m[5], m[6], m[8], m[9], m[10]]);
|
||
|
positionsupdated = false;
|
||
|
}
|
||
|
function hitTest(pos){
|
||
|
if(!enableSelection)
|
||
|
return -1;
|
||
|
let m = matrix_rotateY(-mousedx);
|
||
|
m = matrix_multiply(m, matrix_rotateX(-mousedy));
|
||
|
let V = [m[8] * (fl + mousedz), m[9] * (fl + mousedz), m[10] * (fl + mousedz)];
|
||
|
m = const_multiply((fl + 1 + mousedz)/(fl+1), m);
|
||
|
let trPos = matrix_multiply([m[0], m[1], m[2], m[4], m[5], m[6], m[8], m[9], m[10]], pos, 3,3);
|
||
|
|
||
|
let W=normalize(minus(trPos, V));
|
||
|
let tMin=10000.;
|
||
|
let iMin = -1;
|
||
|
for(let i=0;i<cns;i++){
|
||
|
let Vp=minus(V, matrix_multiply(SphTr[i], Sph[i]));
|
||
|
let B=dot(W,Vp);
|
||
|
let C=dot(Vp,Vp)-Sph[i][4]*Sph[i][4];
|
||
|
let D=B*B-C;
|
||
|
if(D>0.){
|
||
|
let t=-B-sqrt(D);
|
||
|
if(t > 0.0 && t < tMin){
|
||
|
tMin = t; // This is an optimization, we don't have to do lighting/tex
|
||
|
iMin = i; // for objects that are occuluded, which is expensive!
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return iMin;
|
||
|
}
|