vec3 foregroundColor = vec3(.0841, .5329, .9604); vec3 groundColor = vec3(.2, .3, .5); vec4 groundSpecular = vec4(.71, .71, .71, 10.); uniform float uTime;// TIME, IN SECONDS uniform int flags; //FLAGS 0-TEX, 1-RT, 2-MOVED, 3-FLASH, 4-TEX_ROT, 5-CLOUD uniform vec4 rot; //ROTATION VALUES USED TO CALCULATE TRANSFORMATION MATRIX //rot=[cosx, sinx, cosy, siny], x, y BING ROTATED ANGLE uniform float dFL; //DELTA on FOCAL LENGTH uniform vec3 fDir;//Flash light direction varying vec3 vPos;// -1 < vPos.x < +1 // -1 < vPos.y < +1 // vPos.z == 0 float fl=3.;//ORIGINAL FOCAL LENGTH const float pi=3.14159265359; const float _2pi=2.*pi; const int n_ref=5; //<<=======***********************MAX NUMBER OF RAY TRACING RECURRSIONS. INCREASE IT IF YOUR GRAPHICS CARD CAN HANDLE.**************************** //const int ns=4; ns is added from .js vec4 Sph[ns]; uniform sampler2D uSampler[ns]; vec3 Ambient[ns]; vec3 Diffuse[ns]; vec4 Specular[ns]; float ks[ns]; struct Sphere{ //UPDATED SPHERE STRUCTURE THAT SUPPORTS TRANSPARENCY.(UNUSED) vec4 Pos; vec3 Ambient; vec3 Diffuse; vec4 Specular; int textureid; float ks, kt; }; struct RT{ //STACK FOR RECURSIVE RAY TRACING. vec3 color; float ks; // vec3 colorr; // float kt; // vec3 ptr; // vec3 normal; } stack[n_ref]; bool getflag(int flag,int bit){ float shifted = float(int(float(flag)/ pow(2.,float(bit)))); return fract(shifted/2.)>0.; } float clampv(float val,float l,float h){ return valh?h:val; } void main(){ //////////////////////////////////////////////// // // HERE, FOR YOUR HOMEWORK, YOU CAN WRITE ANY // CODE YOU LIKDEFINE A COLOR FOR THIS FRAGMENT. // LIGHT DIRECTION AND COLOR //* I USED LDir AS LIGHT POSITION //* I NORMALIZED IT AFTER GETTING THE //* DIRECTION BY SUBTRACTING IT FROM THE POINT vec3 LDir=vec3(.5,.5,.5); vec3 LCol=vec3(1.,1.,1.); // SPHERE Sph[3]=vec4(.9*sin(uTime*.4),0.,.9*cos(uTime*.4),.25); Sph[2]=vec4(.22*sin(uTime*1.2),0.05,.22*cos(uTime*1.2),.02); Sph[0]=vec4(.45*sin(uTime),0.05*cos(uTime + 1.),.45*cos(uTime),.1); Sph[1]=vec4(0.,0.,0.,.15); // SURFACE REFLECTANCE PROPERTIES, can be transferred from .js Ambient[3]=vec3(.1,.1,.1);// r,g,b Diffuse[3]=vec3(.71,.71,.71);// r,g,b Specular[3]=vec4(.71,.71,.71,10.);// r,g,b,power Ambient[2]=vec3(.1,.05,.05);// r,g,b Diffuse[2]=vec3(.71,.71,.71);// r,g,b Specular[2]=vec4(.71,.71,.71,10.);// r,g,b,power Ambient[1]=vec3(.1,.05,.05);// r,g,b Diffuse[1]=vec3(1.,.5,.5);// r,g,b Specular[1]=vec4(1.,.5,.5,10.);// r,g,b,power Ambient[0]=vec3(.05,.05,.1);// r,g,b Diffuse[0]=vec3(.5,.5,1.);// r,g,b Specular[0]=vec4(1.,.5,.5,20.);// r,g,b,power ks[0] = 0.25; ks[1] = 0.1; ks[2] = 0.3; ks[3] = 0.05; // INITIALIZE TO A BACKGROUND COLOR vec3 color=vec3(.2, .3, .5); float ca=rot.x, sa = rot.y, cb=rot.z, sb=rot.w; mat3 transformation, invTr;//Transformation matrix for viewpoint. transformation[0] = vec3(ca, sb*sa, sa*cb);//because the matrices are all the same, transformation[1] = vec3(0, cb, -sb);//We don't need to calculate it for every pixel transformation[2] = vec3(-sa,ca*sb,ca*cb);//So, we get it from the CPU invTr[0] = vec3(ca, 0, -sa);//it's inverse, to calculate texture mapping. invTr[1] = vec3(sa*sb, cb, ca*sb); invTr[2] = vec3(cb*sa, -sb, ca*cb); vec3 trPos = transformation*((dFL+fl+1.)/(fl+1.))*vec3(vPos.xy, -1); // COMPUTE THE RAY ORIGIN AND DIRECTION vec3 V0=transformation*vec3(0.,0.,fl+dFL), V = V0; vec3 W=normalize(trPos-V); // RAY TRACE TO ALL OBJECTS IN THE SCENE bool rtxoff = getflag(flags, 1), showtexture = !getflag(flags,0), moved = getflag(flags,2)//, // flash = true;//getflag(flags, 3) ;//get flags. // bool hit = false; int cnt_ref = n_ref; for(int j=0;j0.){ float t=-B-sqrt(D); if(t > 0. && t < tMin){ tMin = t; //This is an optimization, we don't have to do lighting/tex iMin = i; // for objects that are occuluded, which is expensive! } } } // IF RAY HITS SPHERE if(iMin >= 0){ float t = tMin; vec3 S=V+t*W; for(int i = 0; i < cns; ++ i) if(i == iMin) //* Because GLSL doesn't support non-const index, { //* we have to get Sph[iMin], uSampler[iMin], etc. this way //*Good old TEXTURE MAPPING from hw1 vec3 tex_sph = (S-Sph[i].xyz); if(moved) tex_sph=invTr*tex_sph;//* transform the sphere to original place if view point moved; //* This is super expensive! plus it's in the inner loop!! //* We added a flag to disable it when the viewport is not moved! float R=Sph[i].w; float tex_x=acos(abs(tex_sph.x)/sqrt(R*R-tex_sph.y*tex_sph.y)); if(tex_sph.x>0.) tex_x=pi-tex_x; tex_x*=1.5708;//*Correct aspect ratio of texture 2:1 -> 2pir:2r tex_x=tex_x+float(uTime); float quo=float(int(tex_x/_2pi)); tex_x=tex_x/_2pi -quo; vec3 texture_color; if(showtexture) texture_color=texture2D(uSampler[i],vec2(tex_x,((R-tex_sph.y)/(2.*R)))).xyz; else texture_color = foregroundColor; vec3 N=normalize(S-Sph[i].xyz); //*DIRECTIONS ARE NORMALIZED TO GET THE CORRECT PHONG LIGHTING vec3 realLDir=normalize(LDir-S); color=( Ambient[i] +Diffuse[i]*max(0.,dot(N,realLDir))*LCol )*texture_color ; // + SPECULAR COMPONENT GOES HERE if(rtxoff || j == n_ref - 1) //if it's the last ray color += sqrt(float(j+1)) * Specular[i].xyz*pow(max(0., dot(2.*dot(N,realLDir)*N-realLDir,-W)),Specular[i].w); //*Pushing current color and ks into stack. //*suppose ks is 0.15 for all spheres, we can //*of course support different ks, kt for different object //*but I didn't have time to do that, just a proof of concept, //*I defined the new sphere structure that could be used in the future. stack[j] = RT(color, ks[i]); V = S; //*NEXT RAY SHOOTING FROM THE INTERSECTION POINT // if(flash && j == 0){ // V0 = V - V0; // hit = true; // } W = -normalize(2. * dot(N, W) * N - W);//*W is the next direction of the next ray. break;// this is only the innerloop, RT is still going! } } else { // TO SIMIPIFY THINGS UP, I'LL ASSUME THAT EVERYTHING // IS INSIDE THE BOUNDING BOX [(-1,-1,-1), (1,1,1)] // AND THERE'S A FLOOR at [y = -1] THE NORMAL IS (0,1,0) // Because We assumed that the light always hit sphere first, // It will have wirld behavior when you rotate the scene upsidedown. float t = -(.2+V.y)/W.y; float sx = V.x + t* W.x, sz = V.z + t * W.z; if(t >= 0.&&abs(sx)<1.5 && abs(sz+.6)<3.) { vec3 S = vec3(sx, -.2, sz); vec3 realLDir=normalize(LDir - S); color=( 0.5 //ambient for ground +0.5*max(0.,realLDir.y)*LCol //diffusion for ground )*groundColor ; // + SPECULAR COMPONENT GOES HERE if(rtxoff || j == n_ref - 1) color += sqrt(float(j+1))*groundSpecular.xyz* //specular for ground. pow(max(0., dot(vec3(-realLDir.x, realLDir.y,-realLDir.z),-W)),groundSpecular.w); stack[j] = RT(color, 0.15); //ks of ground is 0.1 V = S; //Same as above, trace again from S, dir = reflect(W, N). // if(flash && j == 0){ // V0 = W; // hit = true; // } W = vec3(W.x, -W.y, W.z); } else{ if(j > 0) { // If the light bounces away! The color of it is calculated by stack[j] = RT(sqrt(float(j+1))*vec3(4.,4.,4)*pow(max(0.,dot(W, normalize(LDir - V))), 10.), 0.); cnt_ref = j + 1; } else //If the light hits the void in the first place, it's just black! cnt_ref = j;//j is always 0 in this case. break; //The light is shooting into the void, let's stop RT. } } // RTX off if(rtxoff) break; } if(rtxoff) color = stack[0].color; else { color = vec3(0,0,0); float currks = 1.; for(int i = 0; i < n_ref; ++i) { if(i >= cnt_ref)//same trick to use bounded non-const on indexes { color += currks * stack[i - 1].color; //if there're less than n_ref rays, e.g. ray go to the void. break; } color += currks *(1.-stack[i].ks) * stack[i].color; currks *= stack[i].ks; } if(n_ref == cnt_ref) color += currks * stack[n_ref - 1].color; } // APPLY GAMMA CORRECTION AND SET THE PIXEL COLOR. gl_FragColor=vec4(sqrt(color),1.); }