#ifndef _NDEBUG precision highp float; const int ns = 5; const int cns = 5; float noise(vec3 v){return 1.;} #endif #define _DEBUG_BREAK {gl_FragColor=vec4(1,0,0,1); return;} #define REFRACTION (c2 >= 0.? (eta*W + (eta*c1 - sqrt(c2))*N) : ((W + c1*N)/sqrt(1.-c1*c1))) vec3 foregroundColor = vec3(.0841, .5329, .9604); vec3 groundColor = vec3(.2, .3, .5); vec4 groundSpecular = vec4(.71, .71, .71, 10.); uniform float uTime;// TIME, IN SECONDS uniform vec3 Ambient[ns], Diffuse[ns]; uniform vec4 Specular[ns]; uniform float ks[ns], kr[ns], kf[ns]; uniform vec4 Sph[ns]; uniform vec3 SphCanvas[ns]; uniform vec3 Glow[ns]; uniform sampler2D uSampler[ns+3]; uniform vec3 V0; uniform bool glassy; uniform int sel; const float kf_air = 1.000293; varying vec3 trPos; varying float id; varying vec3 norm; varying vec3 texPos; const float pi=3.14159265359; const float _2pi=2.*pi; /***********PLEASE DO INCREASE n_ref(RT DEPTH) FOR BETTER RESULTS************/ /*---->*/const int n_ref=31; //2^n-1 because each hit now spawn at most 2 rays. /**BUT BE CAUTIOUS IF YOU DON'T HAVE A DECENT GRAPHICS CARD (below GTX 950M)**/ const int max_stack = (n_ref+1)/4; vec3 scolor = vec3(0,0,0); struct Ray{ vec3 V; vec3 W; float kf, cumulativeK, decay; } stack1[max_stack], stack2[max_stack]; bool modulo2(int n){ return n-2*(n/2) == 1; } vec2 getTextCoord(vec3 tex_sph, float R){ float tex_x=atan(tex_sph.z,tex_sph.x)/_2pi + 0.5;//*Correct aspect ratio of texture 2:1 -> 2pir:2r tex_x=fract(tex_x+uTime/20.); return vec2(tex_x,-asin(tex_sph.y/R)/pi + 0.5); } #define clamp1(x) ((x)<0.?0.:((x) > 1. ? 1.:(x))) vec3 vec_clamp01(vec3 x) { return vec3(clamp1(x.x), clamp1(x.y), clamp1(x.z)); } void main(){ // gl_FragColor=vec4(_glassy,0,0,1); return; vec3 LDir=vec3(.5,.5,.5); vec3 LCol=vec3(1.,1.,1.); float currKf = kf_air; vec3 color=vec3(.2, .3, .5); vec3 V = V0; vec3 W=(trPos-V); float glassyw = 1.; // bool glassy = _glassy > .1; if(glassy) { vec2 noiseTex = (texPos.xy + 1.)/2.; noiseTex = vec2(clamp1(noiseTex.x ), clamp1(noiseTex.y )); vec4 Wnoise = texture2D(uSampler[ns+2], noiseTex); W += (Wnoise.xyz-.5)*.4; glassyw = Wnoise.w; } bool selected = false; float currentK = 1.; float curr_decay = 1.; int curr_ptr = 0, curr_top = 0, next_top = 0; bool final = false, stackswap = false, stop = false; for(int j=0;j 0){ Ray currR; if(stackswap) currR = stack1[curr]; else currR = stack2[curr]; currKf = currR.kf; currentK = currR.cumulativeK; curr_decay = currR.decay; if(currKf <= 0.001 || currentK <= 0.001) skip = true; V = currR.V; W = currR.W; } else W = normalize(W); if(!skip){ float tMin=10000.; int iMin = -1; for(int i=0;i0.){ float t=-B-sqrt(D); if(t >= 0.01 && t < tMin){ tMin = t; // This is an optimization, we don't have to do lighting/tex iMin = i; // for objects that are occuluded, which is expensive! } else if (t >= -0.01 && t <0.01){ t = -(t + 2.*B); if(t > 0.01 && t < tMin){ tMin = t; iMin = i; } } } } if(iMin >= 0){ if(j == 0 && iMin == sel) selected = true; vec3 S=V+tMin*W; if(curr_decay > .01) curr_decay = curr_decay/(1.+tMin*tMin); for(int i = 0; i < cns; ++ i) if(i == iMin) { if(j == 0) { float intensity = sqrt(dot(Glow[i], Glow[i])); if(intensity > 1.7) { gl_FragColor = vec4(1.74*normalize(Glow[i]), 1.); if(selected) gl_FragColor = vec4(normalize(Glow[i])+vec3(.5,0.,0.), 1.); return; } } vec3 texture_color; vec3 tex_sph = (S-Sph[i].xyz); texture_color=texture2D(uSampler[i],getTextCoord(tex_sph, Sph[i].w)).xyz; vec3 N=normalize(S-Sph[i].xyz); vec3 realLDir=normalize(LDir-S); float c1 =dot(N, W); float eta, nextkf; if(c1<0.){ color=(Ambient[i]+Diffuse[i]*max(0.,dot(N,realLDir))*LCol)*texture_color; for(int k = 0; k < cns; ++k){ if(Glow[k].x > .01){ vec3 lDir = Sph[k].xyz - S; float dist = length(lDir); lDir /= (dist); dist -= Sph[k].w; color += (Glow[k]/(1.+dist*dist))*Diffuse[i]* max(0.,dot(N,lDir)); } } if(final) //if it's the last hit { color += Specular[i].xyz*pow(max(0., dot(-2.*c1*N-realLDir,realLDir)),Specular[i].w); if(curr_decay > .01 && Glow[i].x > .01) { vec3 glow_color = currentK*curr_decay*Glow[i]; float l = length(glow_color); if(l >=1.7) glow_color/=l/1.7; scolor += glow_color; } scolor += color * currentK; break; } else{ c1 = -c1; eta = currKf/kf[i]; nextkf = kf[i]; } } else{ N = -N; eta = currKf/kf_air; nextkf = kf_air; color = Ambient[i]; } float c2 = (1.-eta*eta*(1.-c1*c1)); float nextks = currentK * ks[i], nextkr = currentK * kr[i]; bool refl = nextks > 0.01, refr = nextkr > 0.01; if(refl || refr) for(int k = 0; k < max_stack; ++k) if(k == next_top){ if(stackswap){ if(refl) { stack2[k] = Ray(S, 2. * c1 * N + W, currKf, nextks, curr_decay); //reflection currentK -= nextks; next_top ++; } if(refr) { if(refl) stack2[k+1] = Ray(S, REFRACTION, nextkf, nextkr, curr_decay); //refraction else stack2[k] = Ray(S, REFRACTION, nextkf, nextkr, curr_decay); //refraction currentK -= nextkr; next_top ++; } }else{ if(refl) { //remember, c1 = -NW now stack1[k] = Ray(S, 2. * c1 * N + W, currKf, nextks, curr_decay); //reflection currentK -= nextks; next_top ++; } if(refr) { if(refl) stack1[k+1] = Ray(S, REFRACTION, nextkf, nextkr, curr_decay); //refraction else stack1[k] = Ray(S, REFRACTION, nextkf, nextkr, curr_decay); //refraction currentK -= nextkr; next_top ++; } } break; } scolor += color * currentK; if(curr_decay > .01 && Glow[i].x > .01) { vec3 glow_color = currentK*curr_decay*Glow[i]; float l = length(glow_color); if(l >=1.7) glow_color/=l/1.7; scolor += glow_color; } break; } } else { float t = -(.2+V.y)/W.y; float sx = V.x + t* W.x, sz = V.z + t * W.z; if(t >= 0. && abs(sx) < 1.5 && abs(sz) < 3.) { if(curr_decay > .01) curr_decay = curr_decay/(1.+t*t); vec3 S = vec3(sx, -.2, sz); vec3 realLDir=normalize(LDir - S); color=(0.5+0.5*max(0.,realLDir.y)*LCol)*texture2D(uSampler[ns], vec2((sx+1.5)/3., (sz+3.)/6.)).xyz; if(final&&abs(sx)<1.5 && abs(sz+.6)<3.) { color += groundSpecular.xyz* //specular for ground. pow(max(0., dot(vec3(-realLDir.x, realLDir.y,-realLDir.z),-W)),groundSpecular.w); for(int k = 0; k < cns; ++k){ if(Glow[k].x > .01){ vec3 lDir = Sph[k].xyz - S; float dist = length(lDir); lDir /= (dist); dist -= Sph[k].w; color += (Glow[k]/(1.+dist*dist))* //specular for ground. pow(max(0., dot(vec3(-lDir.x, lDir.y,-lDir.z),-W)),groundSpecular.w); } } scolor += currentK * color; } else { for(int k = 0; k < max_stack; ++k) if(k == next_top){ if(stackswap) stack2[k] = Ray(S, vec3(W.x, -W.y, W.z), kf_air, currentK * 0.15, curr_decay); //reflection else stack1[k] = Ray(S, vec3(W.x, -W.y, W.z), kf_air, currentK * 0.15, curr_decay); //reflection next_top ++; break; } scolor += (currentK*.85)*color; } } else{ if(j > 0) { scolor += currentK * (pow(max(0.,dot(W, normalize(LDir - V))), 10.) * vec3(3.,3.,3.) + foregroundColor*0.1); for(int k = 0; k < cns; ++k){ if(Glow[k].x > .01){ vec3 lDir = Sph[k].xyz - V; float dist = length(lDir); lDir /= (dist); dist -= Sph[k].w; color += (Glow[k]/(1.+dist*dist))* //specular for ground. pow(max(0., dot(vec3(-lDir.x, lDir.y,-lDir.z),W)),groundSpecular.w); } } } else scolor = foregroundColor*0.6; } } } if(++curr_ptr >= curr_top){ if(next_top <= 0) stop = true; if(next_top * 2 > max_stack) final = true; curr_top = next_top; next_top = 0; curr_ptr = 0; stackswap = !stackswap; } break; } } if(stop) break; } if(glassy) scolor *= glassyw*glassyw; for(int i = 0; i < ns; ++i){ if(i == sel) continue; vec2 sx = SphCanvas[i].xy - texPos.xy; float theta = atan(sx.y/sx.x); if(sx.x > 0. && theta < 0.) theta += _2pi; else if(sx.x < 0.) theta += pi; float intensity = sqrt(dot(Glow[i], Glow[i])); vec3 realD = Sph[i].xyz - V0; float realDist = sqrt(dot(realD, realD))-Sph[i].w; intensity/=(1.+realDist*realDist); float dist = dot(sx, sx) - SphCanvas[i].z*SphCanvas[i].z; intensity *= .5; if(dist < intensity && dist > 0.) { vec3 flare = texture2D(uSampler[ns+1], vec2(0.1+0.9*(dist/intensity), theta/float(2*i+7))).xyz; scolor += flare*flare*Glow[i]/(1.+realDist*realDist); } } scolor = vec_clamp01(scolor); if(selected) scolor.x += 0.5; gl_FragColor=vec4(sqrt(scolor),1.); }