vec3 foregroundColor = vec3(.0841, .5329, .9604); vec3 groundColor = vec3(.2, .3, .5); vec4 groundSpecular = vec4(.71, .71, .71, 10.); uniform float uTime;// TIME, IN SECONDS uniform int flags; //FLAGS 0-RT, 1-TEX, 2- varying vec3 vPos;// -1 < vPos.x < +1 // -1 < vPos.y < +1 // vPos.z == 0 float fl=3.; const float pi=3.14159265359; const int n_ref=1; const int ns=2; vec4 Sph[ns]; uniform sampler2D uSampler[ns]; vec3 Ambient[ns]; vec3 Diffuse[ns]; vec4 Specular[ns]; struct RT{ vec3 color; float ks; // vec3 ptr; // vec3 normal; } stack[n_ref]; bool getflag(int flag,int bit){ float shifted = float(int(float(flag)/ pow(2.,float(bit)))); return fract(shifted/2.)>0.; } float clampv(float val,float l,float h){ return valh?h:val; } void main(){ //////////////////////////////////////////////// // // HERE, FOR YOUR HOMEWORK, YOU CAN WRITE ANY // CODE YOU LIKDEFINE A COLOR FOR THIS FRAGMENT. // LIGHT DIRECTION AND COLOR vec3 LDir=vec3(.5,.5,.5); vec3 LCol=vec3(1.,1.,1.); // SPHERE Sph[0]=vec4(.5*sin(uTime),0.,.5*cos(uTime),.2); Sph[1]=vec4(0.,0.,0.,.2); // SURFACE REFLECTANCE PROPERTIES Ambient[0]=vec3(.1,.05,.05);// r,g,b Diffuse[0]=vec3(1.,.5,.5);// r,g,b Specular[0]=vec4(1.,.5,.5,10.);// r,g,b,power Ambient[1]=vec3(.05,.05,.1);// r,g,b Diffuse[1]=vec3(.5,.5,1.);// r,g,b Specular[1]=vec4(1.,.5,.5,20.);// r,g,b,power // INITIALIZE TO A BACKGROUND COLOR vec3 color=vec3(.2, .3, .5); // COMPUTE THE RAY ORIGIN AND DIRECTION float x=vPos.x; float y=vPos.y; vec3 V=vec3(0.,0.,fl); vec3 W=normalize(vec3(x,y,-fl)); // RAY TRACE TO ALL OBJECTS IN THE SCENE bool rtxoff = getflag(flags, 1); int cnt_ref = n_ref; for(int j=0;j0.){ float t=-B-sqrt(D); if(t > 0. && t < tMin){ tMin = t; iMin = i; } } } // IF RAY HITS SPHERE if(iMin >= 0){ float t = tMin; vec3 S=V+t*W; for(int i = 0; i < ns; ++ i) if(i == iMin) { //*TEXTURE MAPPING vec3 tex_sph=S-Sph[i].xyz; float R=Sph[i].w; float tex_x=acos(abs(tex_sph.x)/sqrt(R*R-tex_sph.y*tex_sph.y)); if(tex_sph.x>0.) tex_x=pi-tex_x; tex_x=R*tex_x; tex_x*=1.5708;//*Correct aspect ratio of texture 2:1 -> 2pir:2r tex_x=tex_x+float(uTime)*R; float _2pir=2.*pi*R; float quo=float(int(tex_x/_2pir)); tex_x=clampv((tex_x-quo*_2pir),0.,_2pir)/_2pir; vec3 texture_color; if(!getflag(flags,0)) texture_color=texture2D(uSampler[i],vec2(tex_x,((R-tex_sph.y)/(2.*R)))).xyz; else texture_color = foregroundColor; vec3 N=normalize(S-Sph[i].xyz); //*DIRECTIONS ARE NORMALIZED TO GET THE CORRECT PHONG LIGHTING vec3 realLDir=normalize(LDir-S); color=( Ambient[i] +Diffuse[i]*max(0.,dot(N,realLDir))*LCol )*texture_color ; // + SPECULAR COMPONENT GOES HERE if(rtxoff || j == n_ref - 1) color += Specular[i].xyz*pow(max(0.,dot(2.*dot(N,realLDir)*N-realLDir,-W)),Specular[i].w); stack[j] = RT(color, 0.05); V = S; W = -normalize(2. * dot(N, W) * N - W); break; } } else { // TO SIMIPIFY THINGS UP, I'LL ASSUME THAT EVERYTHING // IS INSIDE THE BOUNDING BOX [(-1,-1,-1), (1,1,1)] // AND THERE'S A INFINITE FLOOR [y = -1] float t = -(1.+V.y)/W.y; if(t >= 0.) { vec3 S = vec3(V.x + t*W.x, -1, V.z + t*W.z); vec3 realLDir=normalize(LDir - S); color=( 0.5 +0.5*max(0.,realLDir.y)*LCol )*groundColor ; // + SPECULAR COMPONENT GOES HERE if(rtxoff || j == n_ref - 1) color += groundSpecular.xyz* pow(max(0., dot(vec3(-realLDir.x, realLDir.y,-realLDir.z),-W)),groundSpecular.w); stack[j] = RT(color, 0.1); V = S; W = vec3(-W.x, W.y, -W.z); } else{ if(j > 0) stack[j] = RT(vec3(1.,1.,1.)*pow(max(0.,dot(-W, normalize(LDir - V))), 10.), 1.); cnt_ref = j;// + 1; break; } } // RTX off if(rtxoff) break; } if(rtxoff) color = stack[0].color; else { color = vec3(0,0,0); float currks = 1.; for(int i = 0; i < n_ref; ++i) { if(i >= cnt_ref) { color += currks * stack[i - 1].color; break; } color += currks *(1.-stack[i].ks) * stack[i].color; currks *= stack[i].ks; } if(n_ref == cnt_ref) color += currks * stack[n_ref - 1].color; } // APPLY GAMMA CORRECTION AND SET THE PIXEL COLOR. gl_FragColor=vec4(sqrt(color),1.); }