You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
autograders/mongodb/source/autograder.py

119 lines
3.8 KiB

import pymongo, json
# dbprep
fsroot = '/autograder/source/'
datasets = ['congress', 'bills']
db = pymongo.MongoClient('mongodb://127.0.0.1')['test']
def postproc_str(data : str): # relaxed str matching
import re
return re.sub(r'[\s|_]', '', data.lower())
def comparator(a, b):
cmp = lambda x, y: 1 if x < y else -1 if x > y else 0
try:
return cmp(a, b)
except Exception as e:
from collections.abc import Iterable
def itcmp(a: Iterable, b: Iterable):
if len(a) < len(b):
return -1
elif len(a) == len(b):
for aa, bb in zip(a, b):
cmp = comparator(aa, bb)
if cmp != 0:
return cmp
else: return 1
return 0
match (a, b):
case (dict(), dict()):
return itcmp([*a.keys(), *a.values()], [*b.keys(), *b.values()])
case (Iterable(), Iterable()):
return itcmp(a, b)
case _ if type(a) == type(b):
return cmp(f'{a}', f'{b}')
case _:
return cmp(hash(type(a)), hash(type(b)))
def postproc_iter(data):
from collections.abc import Iterable
from functools import cmp_to_key
try:
match data:
case str():
return postproc_str(data)
case dict():
return { postproc_iter(k):postproc_iter(v) for k, v in data.items() }
case Iterable(): # flatten, remove order and empty iterables
res = type(data)(
sorted(
[postproc_iter(d) for d in data
if not isinstance(d, Iterable) or d]
, key = cmp_to_key(comparator))
)
return res[0] if len(res) == 1 else res
case _: # primitives
return data
except Exception as e: # fail proof
print(e)
return data
def evaluate(query : str):
import re
query = re.sub(r'(\$?[\d\w_]+)\s*:', r'"\1" :', query)
query = re.sub(r'[\r|\n]|.\s*pretty\s*\(\s*\)', '', query).strip()
if query.endswith(';'): query = query[:-1]
return postproc_iter(list(eval(query))) if query else None
for d in datasets:
with open(fsroot + d + '.json', encoding = 'utf-8') as f:
db[d].insert_many(json.load(f))
from solution import sols
answers = [evaluate(s) for s in sols]
# grading
from os import listdir
from importlib.util import module_from_spec, spec_from_file_location
subroot = '/autograder/submission/'
feedback = ''
submissions = [subroot + f for f in listdir(subroot) if f.strip().lower().endswith('.py')]
grade = 0
n_queries = len(sols)
if submissions:
submission = submissions[0]
for i in range(n_queries):
feedback += f'Query {i + 1}: '
try:
spec = spec_from_file_location('curr', submission)
module = module_from_spec(spec)
spec.loader.exec_module(module)
q = getattr(module, f'query{i + 1}')()
ans = evaluate(q)
if ans == answers[i]:
grade += 1
feedback += 'Correct.\n'
else:
feedback += 'Wrong Answer.\n'
print('ans: ', ans, '\nsol: ', answers[i])
except Exception as e:
feedback += 'Runtime Error.\n'
print (e)
else:
feedback += 'No python file in submission.\n'
# output
results = {
'output': feedback,
'score': grade * 100 / n_queries,
'max_score': 100,
}
with open('/autograder/results/results.json', 'w') as res:
json.dump(results, res)