|
|
|
#include "DecisionTree.h"
|
|
|
|
#include "aquery.h"
|
|
|
|
// __AQ_NO_SESSION__
|
|
|
|
#include "../server/table.h"
|
|
|
|
|
|
|
|
DecisionTree* dt = nullptr;
|
|
|
|
|
|
|
|
__AQEXPORT__(bool) newtree(int height, long f, ColRef<int> sparse, double forget, long maxf, long noclasses, Evaluation e, long r, long rb){
|
|
|
|
if(sparse.size!=f)return 0;
|
|
|
|
int* issparse = (int*)malloc(f*sizeof(int));
|
|
|
|
for(long i=0; i<f; i++){
|
|
|
|
issparse[i] = sparse.container[i];
|
|
|
|
}
|
|
|
|
if(maxf<0)maxf=f;
|
|
|
|
dt = new DecisionTree(height, f, issparse, forget, maxf, noclasses, e, r, rb);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
__AQEXPORT__(bool) fit(ColRef<ColRef<double>> X, ColRef<int> y){
|
|
|
|
if(X.size != y.size)return 0;
|
|
|
|
double** data = (double**)malloc(X.size*sizeof(double*));
|
|
|
|
long* result = (long*)malloc(y.size*sizeof(long));
|
|
|
|
for(long i=0; i<X.size; i++){
|
|
|
|
data[i] = X.container[i].container;
|
|
|
|
result[i] = y.container[i];
|
|
|
|
}
|
|
|
|
dt->fit(data, result, X.size);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
__AQEXPORT__(ColRef_storage) predict(ColRef<ColRef<double>> X){
|
|
|
|
double** data = (double**)malloc(X.size*sizeof(double*));
|
|
|
|
int* result = (int*)malloc(X.size*sizeof(int));
|
|
|
|
for(long i=0; i<X.size; i++){
|
|
|
|
data[i] = X.container[i].container;
|
|
|
|
}
|
|
|
|
for(long i=0; i<X.size; i++){
|
|
|
|
result[i]=dt->Test(data[i], dt->DTree);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ColRef_storage(new ColRef_storage(result, X.size, 0, "prediction", 0), 1, 0, "prediction", 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|