|
|
|
@ -1,252 +1,252 @@
|
|
|
|
|
|
|
|
|
|
#define _DEBUG_BREAK {gl_FragColor=vec4(1,0,0,1); return;}
|
|
|
|
|
#define REFRACTION normalize(eta*W + (eta*c1 - sqrt(1.-eta*eta*(1.-c1*c1)))*N)
|
|
|
|
|
vec3 foregroundColor = vec3(.0841, .5329, .9604);
|
|
|
|
|
vec3 groundColor = vec3(.2, .3, .5);
|
|
|
|
|
vec4 groundSpecular = vec4(.71, .71, .71, 10.);
|
|
|
|
|
uniform float uTime;// TIME, IN SECONDS
|
|
|
|
|
uniform int flags;
|
|
|
|
|
//FLAGS 0-TEX, 1-RT, 2-MOVED, 3-FLASH, 4-TEX_ROT, 5-CLOUD
|
|
|
|
|
|
|
|
|
|
uniform vec4 rot; //ROTATION VALUES USED TO CALCULATE TRANSFORMATION MATRIX
|
|
|
|
|
//rot=[cosx, sinx, cosy, siny], x, y BING ROTATED ANGLE
|
|
|
|
|
uniform int f_tex, f_rt, f_moved;
|
|
|
|
|
uniform float dFL; //DELTA on FOCAL LENGTH
|
|
|
|
|
uniform vec3 fDir;//Flash light direction
|
|
|
|
|
varying vec3 vPos;// -1 < vPos.x < +1
|
|
|
|
|
// -1 < vPos.y < +1
|
|
|
|
|
// vPos.z == 0
|
|
|
|
|
uniform mat3 transformation, invTr;
|
|
|
|
|
uniform vec3 Ambient[ns], Diffuse[ns];
|
|
|
|
|
uniform vec4 Specular[ns];
|
|
|
|
|
uniform float ks[ns], kr[ns], kf[ns];
|
|
|
|
|
uniform vec4 Sph[ns];
|
|
|
|
|
uniform sampler2D uSampler[ns];
|
|
|
|
|
|
|
|
|
|
const float kf_air = 1.000293;
|
|
|
|
|
varying vec3 vPos;
|
|
|
|
|
float fl=3.;//ORIGINAL FOCAL LENGTH
|
|
|
|
|
const float pi=3.14159265359;
|
|
|
|
|
const float _2pi=2.*pi;
|
|
|
|
|
const int n_ref=5; //<<=======***********************MAX NUMBER OF RAY TRACING RECURRSIONS. INCREASE IT IF YOUR GRAPHICS CARD CAN HANDLE.****************************
|
|
|
|
|
//const int ns=4; ns is added from .js
|
|
|
|
|
vec4 Sph[ns];
|
|
|
|
|
uniform sampler2D uSampler[ns];
|
|
|
|
|
vec3 Ambient[ns];
|
|
|
|
|
vec3 Diffuse[ns];
|
|
|
|
|
vec4 Specular[ns];
|
|
|
|
|
float ks[ns];
|
|
|
|
|
struct Sphere{ //UPDATED SPHERE STRUCTURE THAT SUPPORTS TRANSPARENCY.(UNUSED)
|
|
|
|
|
vec4 Pos;
|
|
|
|
|
vec3 Ambient;
|
|
|
|
|
vec3 Diffuse;
|
|
|
|
|
vec4 Specular;
|
|
|
|
|
int textureid;
|
|
|
|
|
float ks, kt;
|
|
|
|
|
};
|
|
|
|
|
struct RT{ //STACK FOR RECURSIVE RAY TRACING.
|
|
|
|
|
vec3 color;
|
|
|
|
|
float ks;
|
|
|
|
|
// vec3 colorr;
|
|
|
|
|
// float kt;
|
|
|
|
|
// vec3 ptr;
|
|
|
|
|
// vec3 normal;
|
|
|
|
|
} stack[n_ref];
|
|
|
|
|
|
|
|
|
|
bool getflag(int flag,int bit){
|
|
|
|
|
float shifted = float(int(float(flag)/ pow(2.,float(bit))));
|
|
|
|
|
return fract(shifted/2.)>0.;
|
|
|
|
|
}
|
|
|
|
|
float clampv(float val,float l,float h){
|
|
|
|
|
return val<l?l:val>h?h:val;
|
|
|
|
|
/***********PLEASE DO INCREASE n_ref(RT DEPTH) FOR BETTER RESULTS************/
|
|
|
|
|
/*---->*/const int n_ref=31; //2^n-1 because each hit now spawn at most 2 rays.
|
|
|
|
|
/**BUT BE CAUTIOUS IF YOU DON'T HAVE A DECENT GRAPHICS CARD (below GTX 950M)**/
|
|
|
|
|
|
|
|
|
|
const int max_stack = (n_ref+1)/4;
|
|
|
|
|
|
|
|
|
|
vec3 scolor = vec3(0,0,0); //Actually 2^n_ref
|
|
|
|
|
struct Ray{
|
|
|
|
|
vec3 V;
|
|
|
|
|
vec3 W;
|
|
|
|
|
float kf, cumulativeK;
|
|
|
|
|
} stack1[max_stack], stack2[max_stack];
|
|
|
|
|
bool modulo2(int n){
|
|
|
|
|
return n-2*(n/2) == 1;
|
|
|
|
|
}
|
|
|
|
|
vec2 getTextCoord(vec3 tex_sph, float R){
|
|
|
|
|
float tex_x=acos(abs(tex_sph.x)/sqrt(R*R-tex_sph.y*tex_sph.y));
|
|
|
|
|
if(tex_sph.x>0.)
|
|
|
|
|
tex_x=pi-tex_x;
|
|
|
|
|
tex_x*=1.5708;//*Correct aspect ratio of texture 2:1 -> 2pir:2r
|
|
|
|
|
tex_x=tex_x+float(uTime);
|
|
|
|
|
float quo=float(int(tex_x/_2pi));
|
|
|
|
|
tex_x=tex_x/_2pi - quo;
|
|
|
|
|
return vec2(tex_x,((R-tex_sph.y)/(2.*R)));
|
|
|
|
|
}
|
|
|
|
|
void main(){
|
|
|
|
|
////////////////////////////////////////////////
|
|
|
|
|
//
|
|
|
|
|
// HERE, FOR YOUR HOMEWORK, YOU CAN WRITE ANY
|
|
|
|
|
// CODE YOU LIKDEFINE A COLOR FOR THIS FRAGMENT.
|
|
|
|
|
|
|
|
|
|
// LIGHT DIRECTION AND COLOR
|
|
|
|
|
//* I USED LDir AS LIGHT POSITION
|
|
|
|
|
//* I NORMALIZED IT AFTER GETTING THE
|
|
|
|
|
//* DIRECTION BY SUBTRACTING IT FROM THE POINT
|
|
|
|
|
vec3 LDir=vec3(.5,.5,.5);
|
|
|
|
|
vec3 LCol=vec3(1.,1.,1.);
|
|
|
|
|
|
|
|
|
|
// SPHERE
|
|
|
|
|
Sph[3]=vec4(.9*sin(uTime*.4),0.,.9*cos(uTime*.4),.25);
|
|
|
|
|
Sph[2]=vec4(.22*sin(uTime*1.2),0.05,.22*cos(uTime*1.2),.02);
|
|
|
|
|
Sph[0]=vec4(.45*sin(uTime),0.05*cos(uTime + 1.),.45*cos(uTime),.1);
|
|
|
|
|
Sph[1]=vec4(0.,0.,0.,.15);
|
|
|
|
|
|
|
|
|
|
// SURFACE REFLECTANCE PROPERTIES, can be transferred from .js
|
|
|
|
|
Ambient[3]=vec3(.1,.1,.1);// r,g,b
|
|
|
|
|
Diffuse[3]=vec3(.71,.71,.71);// r,g,b
|
|
|
|
|
Specular[3]=vec4(.71,.71,.71,10.);// r,g,b,power
|
|
|
|
|
Ambient[2]=vec3(.1,.05,.05);// r,g,b
|
|
|
|
|
Diffuse[2]=vec3(.71,.71,.71);// r,g,b
|
|
|
|
|
Specular[2]=vec4(.71,.71,.71,10.);// r,g,b,power
|
|
|
|
|
Ambient[1]=vec3(.1,.05,.05);// r,g,b
|
|
|
|
|
Diffuse[1]=vec3(1.,.5,.5);// r,g,b
|
|
|
|
|
Specular[1]=vec4(1.,.5,.5,10.);// r,g,b,power
|
|
|
|
|
|
|
|
|
|
Ambient[0]=vec3(.05,.05,.1);// r,g,b
|
|
|
|
|
Diffuse[0]=vec3(.5,.5,1.);// r,g,b
|
|
|
|
|
Specular[0]=vec4(1.,.5,.5,20.);// r,g,b,power
|
|
|
|
|
ks[0] = 0.25;
|
|
|
|
|
ks[1] = 0.1;
|
|
|
|
|
ks[2] = 0.3;
|
|
|
|
|
ks[3] = 0.05;
|
|
|
|
|
// INITIALIZE TO A BACKGROUND COLOR
|
|
|
|
|
float currKf = kf_air;
|
|
|
|
|
vec3 color=vec3(.2, .3, .5);
|
|
|
|
|
float ca=rot.x, sa = rot.y, cb=rot.z, sb=rot.w;
|
|
|
|
|
mat3 transformation, invTr;//Transformation matrix for viewpoint.
|
|
|
|
|
transformation[0] = vec3(ca, sb*sa, sa*cb);//because the matrices are all the same,
|
|
|
|
|
transformation[1] = vec3(0, cb, -sb);//We don't need to calculate it for every pixel
|
|
|
|
|
transformation[2] = vec3(-sa,ca*sb,ca*cb);//So, we get it from the CPU
|
|
|
|
|
invTr[0] = vec3(ca, 0, -sa);//it's inverse, to calculate texture mapping.
|
|
|
|
|
invTr[1] = vec3(sa*sb, cb, ca*sb);
|
|
|
|
|
invTr[2] = vec3(cb*sa, -sb, ca*cb);
|
|
|
|
|
vec3 trPos = transformation*((dFL+fl+1.)/(fl+1.))*vec3(vPos.xy, -1);
|
|
|
|
|
// COMPUTE THE RAY ORIGIN AND DIRECTION
|
|
|
|
|
vec3 V0=transformation*vec3(0.,0.,fl+dFL), V = V0;
|
|
|
|
|
vec3 W=normalize(trPos-V);
|
|
|
|
|
// RAY TRACE TO ALL OBJECTS IN THE SCENE
|
|
|
|
|
bool rtxoff = getflag(flags, 1),
|
|
|
|
|
showtexture = !getflag(flags,0),
|
|
|
|
|
moved = getflag(flags,2)//,
|
|
|
|
|
// flash = true;//getflag(flags, 3)
|
|
|
|
|
;//get flags.
|
|
|
|
|
// bool hit = false;
|
|
|
|
|
int cnt_ref = n_ref;
|
|
|
|
|
vec3 W=(trPos-V);
|
|
|
|
|
bool rtxoff = false, showtexture = true, moved = false;
|
|
|
|
|
float currentK = 1.;
|
|
|
|
|
int curr_ptr = 0, curr_top = 0, next_top = 0;
|
|
|
|
|
bool final = false, stackswap = false;
|
|
|
|
|
for(int j=0;j<n_ref;j++)
|
|
|
|
|
{
|
|
|
|
|
for(int curr = 0; curr < max_stack; ++curr){
|
|
|
|
|
if(curr == curr_ptr){
|
|
|
|
|
bool skip = false;
|
|
|
|
|
if(j > 0){
|
|
|
|
|
Ray currR;
|
|
|
|
|
if(stackswap)
|
|
|
|
|
currR = stack1[curr];
|
|
|
|
|
else
|
|
|
|
|
currR = stack2[curr];
|
|
|
|
|
currKf = currR.kf;
|
|
|
|
|
currentK = currR.cumulativeK;
|
|
|
|
|
if(currKf <= 0.001 || currentK <= 0.001)
|
|
|
|
|
skip = true;
|
|
|
|
|
V = currR.V;
|
|
|
|
|
W = currR.W;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
W = normalize(W);
|
|
|
|
|
if(!skip){
|
|
|
|
|
float tMin=10000.;
|
|
|
|
|
int iMin = -1;
|
|
|
|
|
for(int i=0;i<cns;i++){
|
|
|
|
|
// SHIFT COORDINATES, SO THAT SPHERE IS AT (0,0,0)
|
|
|
|
|
vec3 Vp=V-Sph[i].xyz;
|
|
|
|
|
// SOLVE FOR QUADRATIC EQUATION IN t
|
|
|
|
|
float B=dot(W,Vp);
|
|
|
|
|
float C=dot(Vp,Vp)-Sph[i].w*Sph[i].w;
|
|
|
|
|
float D=B*B-C;
|
|
|
|
|
if(D>0.){
|
|
|
|
|
float t=-B-sqrt(D);
|
|
|
|
|
if(t > 0. && t < tMin){
|
|
|
|
|
if(t >= 0.01 && t < tMin){
|
|
|
|
|
tMin = t; // This is an optimization, we don't have to do lighting/tex
|
|
|
|
|
iMin = i; // for objects that are occuluded, which is expensive!
|
|
|
|
|
}
|
|
|
|
|
else if (t >= -0.01 && t <0.01){
|
|
|
|
|
t = -(t + 2.*B);
|
|
|
|
|
if(t > 0.01 && t < tMin){
|
|
|
|
|
tMin = t;
|
|
|
|
|
iMin = i;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// IF RAY HITS SPHERE
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if(iMin >= 0){
|
|
|
|
|
float t = tMin;
|
|
|
|
|
vec3 S=V+t*W;
|
|
|
|
|
for(int i = 0; i < cns; ++ i)
|
|
|
|
|
if(i == iMin) //* Because GLSL doesn't support non-const index,
|
|
|
|
|
{ //* we have to get Sph[iMin], uSampler[iMin], etc. this way
|
|
|
|
|
//*Good old TEXTURE MAPPING from hw1
|
|
|
|
|
vec3 tex_sph = (S-Sph[i].xyz);
|
|
|
|
|
if(moved)
|
|
|
|
|
tex_sph=invTr*tex_sph;//* transform the sphere to original place if view point moved;
|
|
|
|
|
//* This is super expensive! plus it's in the inner loop!!
|
|
|
|
|
//* We added a flag to disable it when the viewport is not moved!
|
|
|
|
|
float R=Sph[i].w;
|
|
|
|
|
float tex_x=acos(abs(tex_sph.x)/sqrt(R*R-tex_sph.y*tex_sph.y));
|
|
|
|
|
if(tex_sph.x>0.)
|
|
|
|
|
tex_x=pi-tex_x;
|
|
|
|
|
tex_x*=1.5708;//*Correct aspect ratio of texture 2:1 -> 2pir:2r
|
|
|
|
|
tex_x=tex_x+float(uTime);
|
|
|
|
|
float quo=float(int(tex_x/_2pi));
|
|
|
|
|
tex_x=tex_x/_2pi -quo;
|
|
|
|
|
if(i == iMin)
|
|
|
|
|
{
|
|
|
|
|
vec3 texture_color;
|
|
|
|
|
if(showtexture)
|
|
|
|
|
texture_color=texture2D(uSampler[i],vec2(tex_x,((R-tex_sph.y)/(2.*R)))).xyz;
|
|
|
|
|
{
|
|
|
|
|
vec3 tex_sph = (S-Sph[i].xyz);
|
|
|
|
|
if(moved)
|
|
|
|
|
;//tex_sph=invTr*tex_sph; too expensive
|
|
|
|
|
texture_color=texture2D(uSampler[i],getTextCoord(tex_sph, Sph[i].w)).xyz;
|
|
|
|
|
}
|
|
|
|
|
else texture_color = foregroundColor;
|
|
|
|
|
|
|
|
|
|
vec3 N=normalize(S-Sph[i].xyz);
|
|
|
|
|
//*DIRECTIONS ARE NORMALIZED TO GET THE CORRECT PHONG LIGHTING
|
|
|
|
|
vec3 realLDir=normalize(LDir-S);
|
|
|
|
|
color=(
|
|
|
|
|
Ambient[i]
|
|
|
|
|
+Diffuse[i]*max(0.,dot(N,realLDir))*LCol
|
|
|
|
|
)*texture_color
|
|
|
|
|
;
|
|
|
|
|
// + SPECULAR COMPONENT GOES HERE
|
|
|
|
|
if(rtxoff || j == n_ref - 1) //if it's the last ray
|
|
|
|
|
color += sqrt(float(j+1)) * Specular[i].xyz*pow(max(0.,
|
|
|
|
|
dot(2.*dot(N,realLDir)*N-realLDir,-W)),Specular[i].w);
|
|
|
|
|
//*Pushing current color and ks into stack.
|
|
|
|
|
//*suppose ks is 0.15 for all spheres, we can
|
|
|
|
|
//*of course support different ks, kt for different object
|
|
|
|
|
//*but I didn't have time to do that, just a proof of concept,
|
|
|
|
|
//*I defined the new sphere structure that could be used in the future.
|
|
|
|
|
stack[j] = RT(color, ks[i]);
|
|
|
|
|
V = S; //*NEXT RAY SHOOTING FROM THE INTERSECTION POINT
|
|
|
|
|
// if(flash && j == 0){
|
|
|
|
|
// V0 = V - V0;
|
|
|
|
|
// hit = true;
|
|
|
|
|
// }
|
|
|
|
|
W = -normalize(2. * dot(N, W) * N - W);//*W is the next direction of the next ray.
|
|
|
|
|
|
|
|
|
|
break;// this is only the innerloop, RT is still going!
|
|
|
|
|
float c1 =dot(N, W);
|
|
|
|
|
if(c1<0.){
|
|
|
|
|
color=(Ambient[i]+Diffuse[i]*max(0.,dot(N,realLDir))*LCol)*texture_color;
|
|
|
|
|
if(rtxoff || final) //if it's the last hit
|
|
|
|
|
{
|
|
|
|
|
color += Specular[i].xyz*pow(max(0.,
|
|
|
|
|
dot(-2.*c1*N-realLDir,realLDir)),Specular[i].w);
|
|
|
|
|
scolor += color * currentK;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
c1 = -c1;
|
|
|
|
|
float eta =currKf/kf[i];
|
|
|
|
|
float nextks = currentK * ks[i], nextkr = currentK * kr[i];
|
|
|
|
|
bool refl = nextks > 0.001, refr = nextkr > 0.001;
|
|
|
|
|
if(refl || refr)
|
|
|
|
|
for(int k = 0; k < max_stack; ++k)
|
|
|
|
|
if(k == next_top){
|
|
|
|
|
if(stackswap){
|
|
|
|
|
if(refl)
|
|
|
|
|
{
|
|
|
|
|
stack2[k] = Ray(S, 2. * c1 * N + W, currKf, nextks); //reflection
|
|
|
|
|
currentK -= nextks;
|
|
|
|
|
next_top ++;
|
|
|
|
|
}
|
|
|
|
|
if(refr)
|
|
|
|
|
{
|
|
|
|
|
if(refl)
|
|
|
|
|
stack2[k+1] = Ray(S, REFRACTION, kf[i], nextkr); //refraction
|
|
|
|
|
else
|
|
|
|
|
stack2[k] = Ray(S, REFRACTION, kf[i], nextkr); //refraction
|
|
|
|
|
currentK -= nextkr;
|
|
|
|
|
next_top ++;
|
|
|
|
|
}
|
|
|
|
|
}else{
|
|
|
|
|
if(refl)
|
|
|
|
|
{ //remember, c1 = -NW now
|
|
|
|
|
stack1[k] = Ray(S, 2. * c1 * N + W, currKf, nextks); //reflection
|
|
|
|
|
currentK -= nextks;
|
|
|
|
|
next_top ++;
|
|
|
|
|
}
|
|
|
|
|
if(refr)
|
|
|
|
|
{
|
|
|
|
|
if(refl)
|
|
|
|
|
stack1[k+1] = Ray(S, REFRACTION, kf[i], nextkr); //refraction
|
|
|
|
|
else
|
|
|
|
|
stack1[k] = Ray(S, REFRACTION, kf[i], nextkr); //refraction
|
|
|
|
|
currentK -= nextkr;
|
|
|
|
|
next_top ++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
scolor += currentK * color;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
float eta = currKf/kf_air;
|
|
|
|
|
N = -N; //inside the sphere, normal is inward!
|
|
|
|
|
float c2 = (1.-eta*eta*(1.-c1*c1));
|
|
|
|
|
for(int k = 0; k < max_stack; ++k)
|
|
|
|
|
if(k == next_top){
|
|
|
|
|
if(stackswap)
|
|
|
|
|
{
|
|
|
|
|
stack2[k+1] = Ray(S, -2. * c1 * N + W, currKf, currentK*ks[i]); //reflection inside
|
|
|
|
|
if(c2 >= 0.)
|
|
|
|
|
stack2[k] = Ray(S, normalize(eta*W + (eta*c1 - sqrt(c2))*N), kf_air, currentK*kr[i]); //refraction
|
|
|
|
|
else //on the edge, the light won't bend anymore and will keep perpendicular to normal
|
|
|
|
|
stack2[k] = Ray(S, normalize((W + c1*N)/sqrt(1.-c1*c1)), kf_air, currentK*kr[i]); //refraction
|
|
|
|
|
}else{
|
|
|
|
|
stack1[k+1] = Ray(S, -2. * c1 * N + W, currKf, currentK*ks[i]); //reflection inside
|
|
|
|
|
if(c2 >= 0.)
|
|
|
|
|
stack1[k] = Ray(S, normalize(eta*W + (eta*c1 - sqrt(c2))*N), kf_air, currentK*kr[i]); //refraction
|
|
|
|
|
else
|
|
|
|
|
stack1[k] = Ray(S, normalize((W + c1*N)/sqrt(1.-c1*c1)), kf_air, currentK*kr[i]); //refraction
|
|
|
|
|
}
|
|
|
|
|
next_top += 2;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// TO SIMIPIFY THINGS UP, I'LL ASSUME THAT EVERYTHING
|
|
|
|
|
// IS INSIDE THE BOUNDING BOX [(-1,-1,-1), (1,1,1)]
|
|
|
|
|
// AND THERE'S A FLOOR at [y = -1] THE NORMAL IS (0,1,0)
|
|
|
|
|
// Because We assumed that the light always hit sphere first,
|
|
|
|
|
// It will have wirld behavior when you rotate the scene upsidedown.
|
|
|
|
|
float t = -(.2+V.y)/W.y;
|
|
|
|
|
float sx = V.x + t* W.x, sz = V.z + t * W.z;
|
|
|
|
|
|
|
|
|
|
if(t >= 0.&&abs(sx)<1.5 && abs(sz+.6)<3.)
|
|
|
|
|
if(t >= 0. && abs(sx) < 1.5 && abs(sz) < 3.)
|
|
|
|
|
{
|
|
|
|
|
vec3 S = vec3(sx, -.2, sz);
|
|
|
|
|
vec3 realLDir=normalize(LDir - S);
|
|
|
|
|
color=(
|
|
|
|
|
0.5 //ambient for ground
|
|
|
|
|
+0.5*max(0.,realLDir.y)*LCol //diffusion for ground
|
|
|
|
|
)*groundColor
|
|
|
|
|
;
|
|
|
|
|
// + SPECULAR COMPONENT GOES HERE
|
|
|
|
|
if(rtxoff || j == n_ref - 1)
|
|
|
|
|
color += sqrt(float(j+1))*groundSpecular.xyz* //specular for ground.
|
|
|
|
|
color=(0.5+0.5*max(0.,realLDir.y)*LCol)*texture2D(uSampler[4],vec2((sx+1.4)/3., (sz+1.5)/4.)).xyz;
|
|
|
|
|
if(rtxoff || final&&abs(sx)<1.5 && abs(sz+.6)<3.)
|
|
|
|
|
{
|
|
|
|
|
color += groundSpecular.xyz* //specular for ground.
|
|
|
|
|
pow(max(0., dot(vec3(-realLDir.x, realLDir.y,-realLDir.z),-W)),groundSpecular.w);
|
|
|
|
|
stack[j] = RT(color, 0.15); //ks of ground is 0.1
|
|
|
|
|
V = S; //Same as above, trace again from S, dir = reflect(W, N).
|
|
|
|
|
// if(flash && j == 0){
|
|
|
|
|
// V0 = W;
|
|
|
|
|
// hit = true;
|
|
|
|
|
// }
|
|
|
|
|
W = vec3(W.x, -W.y, W.z);
|
|
|
|
|
scolor += currentK * color;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
for(int k = 0; k < max_stack; ++k)
|
|
|
|
|
if(k == next_top){
|
|
|
|
|
if(stackswap)
|
|
|
|
|
stack2[k] = Ray(S, vec3(W.x, -W.y, W.z), kf_air, currentK * 0.15); //reflection
|
|
|
|
|
else
|
|
|
|
|
stack1[k] = Ray(S, vec3(W.x, -W.y, W.z), kf_air, currentK * 0.15); //reflection
|
|
|
|
|
next_top ++;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
scolor += (currentK*.85)*color;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
if(j > 0)
|
|
|
|
|
{
|
|
|
|
|
// If the light bounces away! The color of it is calculated by
|
|
|
|
|
stack[j] = RT(sqrt(float(j+1))*vec3(4.,4.,4)*pow(max(0.,dot(W, normalize(LDir - V))), 10.), 0.);
|
|
|
|
|
cnt_ref = j + 1;
|
|
|
|
|
scolor += currentK * (pow(max(0.,dot(W, normalize(LDir - V))), 10.) * vec3(1.,1.,1.) + foregroundColor*0.1);
|
|
|
|
|
else scolor = foregroundColor*0.6;
|
|
|
|
|
}
|
|
|
|
|
else //If the light hits the void in the first place, it's just black!
|
|
|
|
|
cnt_ref = j;//j is always 0 in this case.
|
|
|
|
|
break; //The light is shooting into the void, let's stop RT.
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// RTX off
|
|
|
|
|
if(rtxoff)
|
|
|
|
|
break;
|
|
|
|
|
if(++curr_ptr >= curr_top){
|
|
|
|
|
curr_top = next_top;
|
|
|
|
|
curr_ptr = 0;
|
|
|
|
|
if(next_top * 2 > max_stack)
|
|
|
|
|
final = true;
|
|
|
|
|
stackswap = !stackswap;
|
|
|
|
|
}
|
|
|
|
|
if(rtxoff)
|
|
|
|
|
color = stack[0].color;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
color = vec3(0,0,0);
|
|
|
|
|
float currks = 1.;
|
|
|
|
|
for(int i = 0; i < n_ref; ++i)
|
|
|
|
|
{
|
|
|
|
|
if(i >= cnt_ref)//same trick to use bounded non-const on indexes
|
|
|
|
|
{
|
|
|
|
|
color += currks * stack[i - 1].color; //if there're less than n_ref rays, e.g. ray go to the void.
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
color += currks *(1.-stack[i].ks) * stack[i].color;
|
|
|
|
|
currks *= stack[i].ks;
|
|
|
|
|
}
|
|
|
|
|
if(n_ref == cnt_ref)
|
|
|
|
|
color += currks * stack[n_ref - 1].color;
|
|
|
|
|
}
|
|
|
|
|
// APPLY GAMMA CORRECTION AND SET THE PIXEL COLOR.
|
|
|
|
|
|
|
|
|
|
gl_FragColor=vec4(sqrt(color),1.);
|
|
|
|
|
gl_FragColor=vec4(sqrt(scolor),1.);
|
|
|
|
|
}
|
|
|
|
|
|