You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Graphics/hw3/shader.bak.frag

264 lines
9.2 KiB

vec3 foregroundColor = vec3(.0841, .5329, .9604);
vec3 groundColor = vec3(.2, .3, .5);
vec4 groundSpecular = vec4(.71, .71, .71, 10.);
uniform float uTime;// TIME, IN SECONDS
uniform int flags;
//FLAGS 0-TEX, 1-RT, 2-MOVED, 3-FLASH, 4-TEX_ROT, 5-CLOUD
uniform vec4 rot; //ROTATION VALUES USED TO CALCULATE TRANSFORMATION MATRIX
//rot=[cosx, sinx, cosy, siny], x, y BING ROTATED ANGLE
uniform float dFL; //DELTA on FOCAL LENGTH
uniform vec3 fDir;//Flash light direction
varying vec3 vPos;// -1 < vPos.x < +1
// -1 < vPos.y < +1
// vPos.z == 0
float fl=3.;//ORIGINAL FOCAL LENGTH
const float pi=3.14159265359;
const float _2pi=2.*pi;
const int n_ref=9; //2^(hits) + 1 because each hit now spawn 2 rays.
//const int ns=4; ns is added from .js
vec4 Sph[ns];
uniform sampler2D uSampler[ns];
vec3 Ambient[ns];
vec3 Diffuse[ns];
vec4 Specular[ns];
float ks[ns];
float kr[ns];
float kf[ns], kf_air = 1.000293;
int type[ns];//Nested objects
// 1-sphere, 2-compost sphere, 3-
struct Object{ //UPDATED SPHERE STRUCTURE THAT SUPPORTS TRANSPARENCY.(UNUSED)
vec4 Pos;
vec3 Ambient;
vec3 Diffuse;
vec4 Specular;
int textureid;
float ks, kt, kr;
};
struct RT{ //STACK FOR RECURSIVE RAY TRACING.
vec3 color;
float ks;
} ;
vec3 scolor = vec3(0,0,0); //Actually 2^n_ref
struct Ray{
vec3 V;
vec3 W;
float kf, cumulativeK;
} lastRay[n_ref/2];
bool modulo2(int n){
return n-2*(n/2) == 1;
}
bool getflag(int flag,int bit){
int shifted = flag / int(pow(2.,float(bit)));
return modulo2(shifted);
}
float clampv(float val,float l,float h){
return val<l?l:val>h?h:val;
}
void main(){
vec3 LDir=vec3(.5,.5,.5);
vec3 LCol=vec3(1.,1.,1.);
// SPHERE
Sph[3]=vec4(.9*sin(uTime*.4),0.,.9*cos(uTime*.4),.25);
Sph[2]=vec4(.22*sin(uTime*1.2),0.05,.22*cos(uTime*1.2),.02);
Sph[0]=vec4(.45*sin(uTime),0.05*cos(uTime + 1.),.45*cos(uTime),.1);
Sph[1]=vec4(0.,0.,0.,.15);
// SURFACE REFLECTANCE PROPERTIES, can be transferred from .js
Ambient[3]=vec3(.1,.1,.1);// r,g,b
Diffuse[3]=vec3(.71,.71,.71);// r,g,b
Specular[3]=vec4(.71,.71,.71,10.);// r,g,b,power
Ambient[2]=vec3(.1,.05,.05);// r,g,b
Diffuse[2]=vec3(.71,.71,.71);// r,g,b
Specular[2]=vec4(.71,.71,.71,10.);// r,g,b,power
Ambient[1]=vec3(.1,.05,.05);// r,g,b
Diffuse[1]=vec3(1.,.5,.5);// r,g,b
Specular[1]=vec4(1.,.5,.5,10.);// r,g,b,power
Ambient[0]=vec3(.05,.05,.1);// r,g,b
Diffuse[0]=vec3(.5,.5,1.);// r,g,b
Specular[0]=vec4(1.,.5,.5,20.);// r,g,b,power
ks[0] = 0.25;
ks[1] = 0.1;
ks[2] = 0.3;
ks[3] = 0.05;
kr[0] = 0.25;
kr[1] = 0.1;
kr[2] = 0.3;
kr[3] = 0.05;
kf[0] = 1.3;
kf[1] = 1.3; //Water
kf[2] = 1.5; //Glass
kf[3] = 1.; //Vacuum
float currKf = kf_air;
vec3 color=vec3(.2, .3, .5);
float ca=rot.x, sa = rot.y, cb=rot.z, sb=rot.w;
mat3 transformation, invTr;//Transformation matrix for viewpoint.
transformation[0] = vec3(ca, sb*sa, sa*cb);//because the matrices are all the same,
transformation[1] = vec3(0, cb, -sb);//We don't need to calculate it for every pixel
transformation[2] = vec3(-sa,ca*sb,ca*cb);//So, we get it from the CPU
invTr[0] = vec3(ca, 0, -sa);//it's inverse, to calculate texture mapping.
invTr[1] = vec3(sa*sb, cb, ca*sb);
invTr[2] = vec3(cb*sa, -sb, ca*cb);
vec3 trPos = transformation*((dFL+fl+1.)/(fl+1.))*vec3(vPos.xy, -1);
vec3 V0=transformation*vec3(0.,0.,fl+dFL), V = V0;
vec3 W=normalize(trPos-V);
bool rtxoff = getflag(flags, 1),
showtexture = !getflag(flags,0),
moved = getflag(flags,2);
int cnt_ref = n_ref;
float currentK = 1.;
for(int j=0;j<n_ref;j++)
{
if(j > 0){
Ray currR = lastRay[(j-1)/2];
currKf = currR.kf;
currentK = currR.cumulativeK;
if(currKf <= 0.0000001 || currentK <= 0.0000001)
continue; // We make it terminate w/ kf=0
V = currR.V;
W = currR.W;
}
float tMin=10000.;
int iMin = -1;
for(int i=0;i<cns;i++){
// SHIFT COORDINATES, SO THAT SPHERE IS AT (0,0,0)
vec3 Vp=V-Sph[i].xyz;
// SOLVE FOR QUADRATIC EQUATION IN t
float B=dot(W,Vp);
float C=dot(Vp,Vp)-Sph[i].w*Sph[i].w;
float D=B*B-C;
if(D>0.){
float t=-B-sqrt(D);
if(t >= 0.00001 && t < tMin){
tMin = t; // This is an optimization, we don't have to do lighting/tex
iMin = i; // for objects that are occuluded, which is expensive!
}
else if (t >= -0.00001){
t = -(t + 2.*B);
if(t < tMin){
tMin = t;
iMin = i;
}
}
}
}
// IF RAY HITS SPHERE
if(iMin >= 0){
float t = tMin;
vec3 S=V+t*W;
for(int i = 0; i < cns; ++ i)
if(i == iMin)
{
vec3 tex_sph = (S-Sph[i].xyz);
if(moved)
tex_sph=invTr*tex_sph;
float R=Sph[i].w;
float tex_x=acos(abs(tex_sph.x)/sqrt(R*R-tex_sph.y*tex_sph.y));
if(tex_sph.x>0.)
tex_x=pi-tex_x;
tex_x*=1.5708;//*Correct aspect ratio of texture 2:1 -> 2pir:2r
tex_x=tex_x+float(uTime);
float quo=float(int(tex_x/_2pi));
tex_x=tex_x/_2pi - quo;
vec3 texture_color;
if(showtexture)
texture_color=texture2D(uSampler[i],vec2(tex_x,((R-tex_sph.y)/(2.*R)))).xyz;
else texture_color = foregroundColor;
vec3 N=normalize(S-Sph[i].xyz);
vec3 realLDir=normalize(LDir-S);
color=(
Ambient[i]
+Diffuse[i]*max(0.,dot(N,realLDir))*LCol
)*texture_color
;
if(rtxoff || j >= n_ref/2) //if it's the last hit
{
color += sqrt(float(j+1)) * Specular[i].xyz*pow(max(0.,
dot(2.*dot(N,realLDir)*N-realLDir,-W)),Specular[i].w);
scolor += color * currentK;
}
else{
lastRay[2 * j + 1] = Ray(S, (-(2. * dot(N, W) * N - W)), currKf, currentK * ks[i]); //reflection
float ita = currKf/kf[i];
float c1 = dot(N, W);
float c2 = sqrt(1.-ita*ita*(1.-c1*c1));
lastRay[2 * j + 2] = Ray(S, normalize(ita*W + (ita*c1 - c2)*N), kf[i], currentK * kr[i]); //refraction
scolor += currentK*(1. - ks[i] - kr[i]) * color;//stack[j] = RT(color, currentK*(1. - ks[i] - kr[i]) * color;
}
break;
}
}
else {
float t = -(.2+V.y)/W.y;
float sx = V.x + t* W.x, sz = V.z + t * W.z;
if(t >= 0.&&abs(sx)<1.5 && abs(sz+.6)<3.)
{
vec3 S = vec3(sx, -.2, sz);
vec3 realLDir=normalize(LDir - S);
color=(
0.5 //ambient for ground
+0.5*max(0.,realLDir.y)*LCol //diffusion for ground
)*groundColor
;
// + SPECULAR COMPONENT GOES HERE
if(rtxoff || j == n_ref - 1)
{
color += sqrt(float(j+1))*groundSpecular.xyz* //specular for ground.
pow(max(0., dot(vec3(-realLDir.x, realLDir.y,-realLDir.z),-W)),groundSpecular.w);
//stack[j] = RT(color, currentK); //ks of ground is 0.15
scolor += currentK * color;
}
else
{
lastRay[2 * j + 1] = Ray(S, vec3(W.x, -W.y, W.z), currKf, currentK * 0.15); //reflection
//stack[j] = RT(color, currentK * (1.-0.15)); //ks of ground is 0.15
scolor += (currentK*.85)*color;
}
//lastRay[2 * j + 2] = Ray(S, vec3(0,0,0), 0.); //refraction
}
else{
if(j > 0)
{
// If the light bounces away! The color of it is calculated by
//stack[j] = RT(sqrt(float(j+1))*vec3(4.,4.,4)*pow(max(0.,dot(W, normalize(LDir - V))), 10.), currentK);
scolor += currentK * sqrt(float(j+1)*pow(max(0.,dot(W, normalize(LDir - V))), 10.)) * vec3(4.,4.,4);
//cnt_ref = j + 1;
}
//else //If the light hits the void in the first place, it's just black!
//cnt_ref = j;//j is always 0 in this case.
break; //The light is shooting into the void, let's stop RT.
}
}
if(rtxoff)
break;
}
if(!rtxoff)
{
color = scolor;
// color = vec3(0,0,0);
// //float currks = 1.;
// for(int i = 0; i < n_ref; ++i)
// {
// //if(i >= cnt_ref)//same trick to use bounded non-const on indexes
// // {
// // color += currks * stack[i - 1].color; //if there're less than n_ref rays, e.g. ray go to the void.
// // break;
// // }
// if(stack[i].ks <0.0000001)
// continue;
// color += stack[i].ks * stack[i].color;//currks *(1.-stack[i].ks) * stack[i].color;
// //currks *= stack[i].ks;
// }
// // if(n_ref == cnt_ref)
// // color += currks * stack[n_ref - 1].color;
}
gl_FragColor=vec4(sqrt(color),1.);
}